ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium Microcanonical Annealing for First-Order Phase Transitions

97   0   0.0 ( 0 )
 نشر من قبل Jon Machta
 تاريخ النشر 2019
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A framework is presented for carrying out simulations of equilibrium systems in the microcanonical ensemble using annealing in an energy ceiling. The framework encompasses an equilibrium version of simulated annealing, population annealing and hybrid algorithms that interpolate between these extremes. These equilibrium, microcanonical annealing algorithms are applied to the thermal first-order transition in the 20-state, two-dimensional Potts model. All of these algorithms are observed to perform well at the first-order transition though for the system sizes studied here, equilibrium simulated annealing is most efficient.



قيم البحث

اقرأ أيضاً

Population annealing is a hybrid of sequential and Markov chain Monte Carlo methods geared towards the efficient parallel simulation of systems with complex free-energy landscapes. Systems with first-order phase transitions are among the problems in computational physics that are difficult to tackle with standard methods such as local-update simulations in the canonical ensemble, for example with the Metropolis algorithm. It is hence interesting to see whether such transitions can be more easily studied using population annealing. We report here our preliminary observations from population annealing runs for the two-dimensional Potts model with $q > 4$, where it undergoes a first-order transition.
In the present work, we discuss how the functional form of thermodynamic observables can be deduced from the geometric properties of subsets of phase space. The geometric quantities taken into account are mainly extrinsic curvatures of the energy lev el sets of the Hamiltonian of a system under investigation. In particular, it turns out that peculiar behaviours of thermodynamic observables at a phase transition point are rooted in more fundamental changes of the geometry of the energy level sets in phase space. More specifically, we discuss how microcanonical and geometrical descriptions of phase-transitions are shaped in the special case of $phi^4$ models with either nearest-neighbours and mean-field interactions.
78 - Kai Qi , Michael Bachmann 2018
By means of the principle of minimal sensitivity we generalize the microcanonical inflection-point analysis method by probing derivatives of the microcanonical entropy for signals of transitions in complex systems. A strategy of systematically identi fying and locating independent and dependent phase transitions of any order is proposed. The power of the generalized method is demonstrated in applications to the ferromagnetic Ising model and a coarse-grained model for polymer adsorption onto a substrate. The results shed new light on the intrinsic phase structure of systems with cooperative behavior.
When a second-order phase transition is crossed at fine rate, the evolution of the system stops being adiabatic as a result of the critical slowing down in the neighborhood of the critical point. In systems with a topologically nontrivial vacuum mani fold, disparate local choices of the ground state lead to the formation of topological defects. The universality class of the transition imprints a signature on the resulting density of topological defects: It obeys a power law in the quench rate, with an exponent dictated by a combination of the critical exponents of the transition. In inhomogeneous systems the situation is more complicated, as the spontaneous symmetry breaking competes with bias caused by the influence of the nearby regions that already chose the new vacuum. As a result, the choice of the broken symmetry vacuum may be inherited from the neighboring regions that have already entered the new phase. This competition between the inherited and spontaneous symmetry breaking enhances the role of causality, as the defect formation is restricted to a fraction of the system where the front velocity surpasses the relevant sound velocity and phase transition remains effectively homogeneous. As a consequence, the overall number of topological defects can be substantially suppressed. When the fraction of the system is small, the resulting total number of defects is still given by a power law related to the universality class of the transition, but exhibits a more pronounced dependence on the quench rate. This enhanced dependence complicates the analysis but may also facilitate experimental test of defect formation theories.
308 - H Chamati , S Romano 2007
The present paper considers some classical ferromagnetic lattice--gas models, consisting of particles that carry $n$--component spins ($n=2,3$) and associated with a $D$--dimensional lattice ($D=2,3$); each site can host one particle at most, thus im plicitly allowing for hard--core repulsion; the pair interaction, restricted to nearest neighbors, is ferromagnetic, and site occupation is also controlled by the chemical potential $mu$. The models had previously been investigated by Mean Field and Two--Site Cluster treatments (when D=3), as well as Grand--Canonical Monte Carlo simulation in the case $mu=0$, for both D=2 and D=3; the obtained results showed the same kind of critical behaviour as the one known for their saturated lattice counterparts, corresponding to one particle per site. Here we addressed by Grand--Canonical Monte Carlo simulation the case where the chemical potential is negative and sufficiently large in magnitude; the value $mu=-D/2$ was chosen for each of the four previously investigated counterparts, together with $mu=-3D/4$ in an additional instance. We mostly found evidence of first order transitions, both for D=2 and D=3, and quantitatively characterized their behaviour. Comparisons are also made with recent experimental results.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا