ﻻ يوجد ملخص باللغة العربية
Ba2YIrO6, a Mott insulator, with four valence electrons in Ir5+ d-shell (5d4) is supposed to be non-magnetic, with Jeff = 0, within the atomic physics picture. However, recent suggestions of non-zero magnetism have raised some fundamental questions about its origin. Focussing on the phonon dynamics, probed via Raman scattering, as a function of temperature and different incident photon energies, as an external perturbation. Our studies reveal strong renormalization of the phonon self-energy parameters and integrated intensity for first-order modes, especially redshift of the few first-order modes with decreasing temperature and anomalous softening of modes associated with IrO6 octahedra, as well as high energy Raman bands attributed to the strong anharmonic phonons and coupling with orbital excitations. The distinct renormalization of second-order Raman bands with respect to their first-order counterpart suggest that higher energy Raman bands have significant contribution from orbital excitations. Our observation indicates that strong anharmonic phonons coupled with electronic/orbital degrees of freedom provides a knob for tuning the conventional electronic levels for 5d-orbitals, and this may give rise to non-zero magnetism as postulated in recent theoretical calculations with rich magnetic phases.
Materials with a 5d4 electronic configuration are generally considered to have a nonmagnetic ground state (J=0). Interestingly, Sr2YIrO6 (Ir5+ having 5d4 electronic configuration) was recently reported to exhibit long-range magnetic order at low temp
We synthesize and study single crystals of a new double-perovskite Sr2YIrO6. Despite two strongly unfavorable conditions for magnetic order, namely, pentavalent Ir5+(5d4) ions which are anticipated to have Jeff=0 singlet ground states in the strong s
Our detailed temperature dependent synchrotron powder x-ray diffraction studies along with first-principles density functional perturbation theory calculations, enable us to shed light on the origin of ferroelectricity in GdCrO3. The actual lattice s
We report on Raman scattering measurements of single crystalline La$_{1-x}$Sr$_x$MnO$_3$ ($x$=0, 0.06, 0.09 and 0.125), focusing on the high frequency regime. We observe multi-phonon scattering processes up to fourth-order which show distinct feature
We show that in crystals where light ions are symmetrically intercalated between heavy ions, the electron-phonon coupling for carriers located at the light sites cannot be described by a Holstein model. We introduce the double-well electron-phonon co