ترغب بنشر مسار تعليمي؟ اضغط هنا

Cubic lead perovskite PbMoO3 with anomalous metallic behavior

98   0   0.0 ( 0 )
 نشر من قبل Hiroshi Takatsu
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

A previously unreported Pb-based perovskite PbMoO$_3$ is obtained by high-pressure and high-temperature synthesis. This material crystallizes in the $Pmbar{3}m$ cubic structure at room temperature, making it distinct from typical Pb-based perovskite oxides with a structural distortion. PbMoO$_3$ exhibits a metallic behavior down to 0.1 K with an unusual $T$-sub linear dependence of the electrical resistivity. Moreover, a large specific heat is observed at low temperatures accompanied by a peak in $C_P/T^3$ around 10 K, in marked contrast to the isostructural metallic system SrMoO$_3$. These transport and thermal properties for PbMoO$_3$, taking into account anomalously large Pb atomic displacements detected through diffraction experiments, are attributed to a low-energy vibrational mode, associated with incoherent off-centering of lone pair Pb$^{2+}$ cations. We discuss the unusual behavior of the electrical resistivity in terms of a polaron-like conduction, mediated by the strong coupling between conduction electrons and optical phonons of the local low-energy vibrational mode.



قيم البحث

اقرأ أيضاً

The skyrmion crystal (SkX) characterized by a multiple-q helical spin modulation has been reported as a unique topological state that competes with the single-q helimagnetic order in non-centrosymmetric materials. Here we report the discovery of a ri ch variety of multiple-q helimagnetic spin structures in the centrosymmetric cubic perovskite SrFeO3. On the basis of neutron diffraction measurements, we have identified two types of robust multiple-q topological spin structures that appear in the absence of external magnetic fields: an anisotropic double-q spin spiral and an isotropic quadruple-q spiral hosting a three-dimensional lattice of hedgehog singularities. The present system not only diversifies the family of SkX host materials, but furthermore provides an experimental missing link between centrosymmetric lattices and topological helimagnetic order. It also offers perspectives for integration of SkXs into oxide electronic devices.
We report magnetic behavior of two intermetallics-based kagome lattices, Tb3Ru4Al12 and Er3Ru4Al12, crystallizing in the Gd3Ru4Al12-type hexagonal crystal structure, by measurements in the range 1.8-300 K with bulk experimental techniques (ac and dc magnetization, heat-capacity and magnetoresistance). The main finding is that the Tb compound, known to order antiferromagnetically below (T_N=) 22 K, shows glassy characteristics at lower temperatures (<15K), thus characterizing this compound as a re-entrant spin-glass. The data reveal that glassy phase is quite complex and is of a cluster type. Since the glassy behavior was not seen for the Gd analogue in the past literature, this finding for the Tb compound emphasizes that this kagome family could provide an opportunity to explore the role of higher order (such as quadrupole) in bringing out magnetic frustration. Additional findings reported here for this compound are: (i) The temperature dependence of magnetic susceptibility and electrical resistivity in the range 12 - 20 K are found to be hysteretic leading to a magnetic phase in this temperature range, mimicking disorder-induced first-order magnetic phase-transition. (ii) Features attributable to an interesting magnetic phase co-existence phenomenon in the magnetoresistance in zero field, after cycling across metamagnetic transition fields, are observed. With respect to the Er compound, we do not find any evidence for long-range magnetic ordering down to 2 K, but this appears to be on the verge of magnetic order at 2 K.
138 - Qi Wang , Yuanfeng Xu , Rui Lou 2017
The origin of anomalous Hall effect (AHE) in magnetic materials is one of the most intriguing aspect in condensed matter physics and has been controversial for a long time. Recent studies indicate that the intrinsic AHE is closely related to the Berr y curvature of occupied electronic states. In a magnetic Weyl semimetal with broken time-reversal symmetry, there are significant contributions on Berry curvature around Weyl nodes, which would lead to a large intrinsic AHE. Here, we report the large intrinsic AHE in the half-metallic ferromagnet Co3Sn2S2 single crystal. By systematically mapping out the electronic structure of Co3Sn2S2 theoretically and experimentally, the large intrinsic AHE should originate from the Weyl fermions near the Fermi energy. Furthermore, the intrinsic anomalous Hall conductivity depends linearly on the magnetization and this can be attributed to the sharp decrease of magnetization and the change of topological characteristics.
Detailed electronic structure calculations of picene clusters doped by potassium modeling the crystalline K3picene structure show that while two electrons are completely transferred from potassium atoms to the LUMO of pristine picene, the third one r emains closely attached to both material components. Multiconfigurational analysis is necessary to show that many structures of almost degenerate total energies compete to define the cluster ground state. Our results prove that the 4s orbital of potassium should be included in any interaction model describing the material. We propose a quarter filled two orbital model as the most simple model capable of describing the electronic structure of K-intercalated picene. Precise solutions obtained by a development of Lanczos method show low energy electronic excitations involving orbitals located at different positions. Consequently, metallic transport is possible in spite of the clear dominance of interaction over hopping.
Single crystals of electron-doped SrMnO3 with a cubic perovskite structure have been systematically investigated as the most canonical (orbital-degenerate) double-exchange system, whose ground states have been still theoretically controversial. With only 1-2% electron doping by Ce substitution for Sr, a G-type antiferromagnetic metal with a tiny spin canting in a cubic lattice shows up as the ground state, where the Jahn-Teller polarons with heavy mass are likely to form. Further electron doping above 4%, however, replaces this isotropic metal with an insulator with tetragonal lattice distortion, accompanied by a quasi-one-dimensional 3z^2-r^2 orbital ordering with the C-type antiferromagnetism. The self-organization of such dilute polarons may reflect the critical role of the cooperative Jahn-Teller effect that is most effective in the originally cubic system.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا