ﻻ يوجد ملخص باللغة العربية
We study the eigenvalues of a Laplace-Beltrami operator defined on the set of the symmetric polynomials, where the eigenvalues are expressed in terms of partitions of integers. By assigning partitions with the restricted uniform measure, the restricted Jack measure, the uniform measure or the Plancherel measure, we prove that the global distribution of the eigenvalues is asymptotically a new distribution $mu$, the Gamma distribution, the Gumbel distribution and the Tracy-Widom distribution, respectively. An explicit representation of $mu$ is obtained by a function of independent random variables. We also derive an independent result on random partitions itself: a law of large numbers for the restricted uniform measure. Two open problems are also asked.
The discrete Laplace operator on a triangulated polyhedral surface is related to geometric properties of the surface. This paper studies extremum problems for eigenvalues of the discrete Laplace operators. Among all triangles, an equilateral triangle
Elliptic partial differential equations on surfaces play an essential role in geometry, relativity theory, phase transitions, materials science, image processing, and other applications. They are typically governed by the Laplace-Beltrami operator. W
For free boundary problems on Euclidean spaces, the monotonicity formulas of Alt-Caffarelli-Friedman and Caffarelli-Jerison-Kenig are cornerstones for the regularity theory as well as the existence theory. In this article we establish the analogs of
It is natural to investigate if the quantization of an integrable or superintegrable classical Hamiltonian systems is still integrable or superintegrable. We study here this problem in the case of natural Hamiltonians with constants of motion quadrat
Tree-child networks are a recently-described class of directed acyclic graphs that have risen to prominence in phylogenetics (the study of evolutionary trees and networks). Although these networks have a number of attractive mathematical properties,