ﻻ يوجد ملخص باللغة العربية
Elliptic partial differential equations on surfaces play an essential role in geometry, relativity theory, phase transitions, materials science, image processing, and other applications. They are typically governed by the Laplace-Beltrami operator. We present and analyze approximations by Surface Finite Element Methods (SFEM) of the Laplace-Beltrami eigenvalue problem. As for SFEM for source problems, spectral approximation is challenged by two sources of errors: the geometric consistency error due to the approximation of the surface and the Galerkin error corresponding to finite element resolution of eigenfunctions. We show that these two error sources interact for eigenfunction approximations as for the source problem. The situation is different for eigenvalues, where a novel situation occurs for the geometric consistency error: The degree of the geometric error depends on the choice of interpolation points used to construct the approximate surface. Thus the geometric consistency term can sometimes be made to converge faster than in the eigenfunction case through a judicious choice of interpolation points.
We prove new a posteriori error estimates for surface finite element methods (SFEM). Surface FEM approximate solutions to PDE posed on surfaces. Prototypical examples are elliptic PDE involving the Laplace-Beltrami operator. Typically the surface is
We develop a finite element method for the Laplace-Beltrami operator on a surface with boundary and nonhomogeneous Dirichlet boundary conditions. The method is based on a triangulation of the surface and the boundary conditions are enforced weakly us
For the Stokes equation over 2D and 3D domains, explicit a posteriori and a priori error estimation are novelly developed for the finite element solution. The difficulty in handling the divergence-free condition of the Stokes equation is solved by ut
We develop all of the components needed to construct an adaptive finite element code that can be used to approximate fractional partial differential equations, on non-trivial domains in $dgeq 1$ dimensions. Our main approach consists of taking tools
A number of non-standard finite element methods have been proposed in recent years, each of which derives from a specific class of PDE-constrained norm minimization problems. The most notable examples are $mathcal{L}mathcal{L}^*$ methods. In this wor