ترغب بنشر مسار تعليمي؟ اضغط هنا

Modified Laplace-Beltrami quantization of natural Hamiltonian systems with quadratic constants of motion

62   0   0.0 ( 0 )
 نشر من قبل Giovanni Rastelli
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It is natural to investigate if the quantization of an integrable or superintegrable classical Hamiltonian systems is still integrable or superintegrable. We study here this problem in the case of natural Hamiltonians with constants of motion quadratic in the momenta. The procedure of quantization here considered, transforms the Hamiltonian into the Laplace-Beltrami operator plus a scalar potential. In order to transform the constants of motion into symmetry operators of the quantum Hamiltonian, additional scalar potentials, known as quantum corrections, must be introduced, depending on the Riemannian structure of the manifold. We give here a complete geometric characterization of the quantum corrections necessary for the case considered. Stackel systems are studied in particular details. Examples in conformally and non-conformally flat manifolds are given.



قيم البحث

اقرأ أيضاً

We aim this paper to develop the classical lattice models with unbounded spin to the case of non-quadratic polynomial interaction. We demonstrate that the distinct relation between the growths of potentials leads to the uniqueness and the fast decay of correlations for Gibbs measure.
We present a procedure for averaging one-parameter random unitary groups and random self-adjoint groups. Central to this is a generalization of the notion of weak convergence of a sequence of measures and the corresponding generalization of the conce pt of convergence in distribution. The convergence is established in determination of the sequence of compositions of independent random transformations. When sequences of compositions of independent random transformations of the shift by the Euclidean vector in space, the results obtained coincide with the central limit theorem for the sums independent random vectors. The results are applied to the dynamics of quantum systems arising random quantization of the classical Hamiltonian system.
We study four particular 3-dimensional natural Hamiltonian systems defined in conformally Euclidean spaces. We prove their superintegrability and we obtain, in the four cases, the maximal number of functionally independent integrals of motion. The tw o first systems are related to the 3-dimensional isotropic oscillator and the superintegrability is quadratic. The third system is obtained as a continuous deformation of an oscillator with ratio of frequencies 1:1:2 and with three additional nonlinear terms of the form $k_2/x^2$, $k_3/y^2$ and $k_4/z^2$, and the fourth system is obtained as a deformation of the Kepler Hamiltonian also with these three particular nonlinear terms. These third and fourth systems are superintegrable but with higher-order constants of motion. The four systems depend on a real parameter in such a way that they are continuous functions of the parameter (in a certain domain of the parameter) and in the limit of such parameter going to zero the Euclidean dynamics is recovered.
2nd-order conformal superintegrable systems in $n$ dimensions are Laplace equations on a manifold with an added scalar potential and $2n - 1$ independent 2nd order conformal symmetry operators. They encode all the information about Helmholtz (eigenva lue) superintegrable systems in an efficient manner: there is a 1-1 correspondence between Laplace superintegrable systems and Stackel equivalence classes of Helmholtz superintegrable systems. In this paper we focus on superintegrable systems in two dimensions, $n = 2$, where there are 44 Helmholtz systems, corresponding to 12 Laplace systems. For each Laplace equation we determine the possible 2-variate polynomial subspaces that are invariant under the action of the Laplace operator, thus leading to families of polynomial eigenfunctions. We also study the behavior of the polynomial invariant subspaces under a Stackel transform. The principal new results are the details of the polynomial variables and the conditions on parameters of the potential corresponding to polynomial solutions. The hidden gl_3-algebraic structure is exhibited for the exact and quasi-exact systems. For physically meaningful solutions, the orthogonality properties and normalizability of the polynomials are presented as well. Finally, for all Helmholtz superintegrable solvable systems we give a unified construction of 1D and 2D quasi-exactly solvable potentials possessing polynomial solutions, and a construction of new 2D PT-symmetric potentials is established.
We consider the equation rotB+aB=0 (1) in the plane with a being a real-valued function and show that it can be reduced to a Vekua equation of a special form. In the case when a depends on one Cartesian variable a complete system of exact solutions o f the Vekua equation and hence of equation (1) is constructed based on L. Bers theory of formal powers.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا