ترغب بنشر مسار تعليمي؟ اضغط هنا

Swift Observations of the High-mass X-ray Binary IGR J16283-4838 unveil a 288-day Orbital Period

125   0   0.0 ( 0 )
 نشر من قبل Valentina La Parola
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report on the temporal and spectral properties of the HMXB IGR J16283-4838 in the hard X-ray band. We searched the first 88 months of Swift BAT survey data for long-term periodic modulations. We also investigated the broad band (0.2--150 keV) spectral properties of IGR J16283--4838 complementing the BAT dataset with the soft X-ray data from the available Swift-XRT pointed observations. The BAT light curve of IGR J16283-4838 revealed a periodic modulation at P_o=287.6+7-1.7 days (with a significance higher than 4 standard deviations). The profile of the light curve folded at P_o shows a sharp peak lasting ~ 12 d, over a flat plateau. The long-term light curve shows also a ~300 d interval of prolonged enhanced emission. The observed phenomenology is suggestive of a Be nature of IGR J16283-4838, where the narrow periodic peaks and the ~300 d outburst can be interpreted as Type I and Type II outbursts, respectively. The broad band 0.2-150 keV spectrum can be described with an absorbed power-law and a steepening in the BAT energy range.



قيم البحث

اقرأ أيضاً

651 - L. J. Pellizza 2010
Context. One of the most striking discoveries of the INTEGRAL observatory is the existence of a previously unknown population of X-ray sources in the inner arms of the Galaxy. The investigations of the optical/NIR counterparts of some of them have pr ovided evidence that they are highly absorbed high mass X-ray binaries hosting supergiants. Aims. We aim to identify the optical/NIR counterpart of one of the newly discovered INTEGRAL sources, IGR J16283-4838, and determine the nature of this system. Methods. We present optical and NIR observations of the field of IGR J16283-4838, and use the astrometry and photometry of the sources within it to identify its counterpart. We obtain its NIR spectrum, and its optical/NIR spectral energy distribution by means of broadband photometry. We search for the intrinsic polarization of its light, and its short and long-term photometric variability. Results. We demonstrate that this source is a highly absorbed HMXB located beyond the Galactic center, and that it may be surrounded by a variable circumstellar medium.
IGR J16195-4945 is a hard X-ray source discovered by INTEGRAL during the Core Program observations performed in 2003. We analyzed the X-ray emission of this source exploiting the Swift-BAT survey data from December 2004 to March 2015, and all the ava ilable Swift-XRT pointed observations. The source is detected at a high significance level in the 123-month BAT survey data, with an average 15-150 keV flux of the source of ~1.6 mCrab. The timing analysis on the BAT data reveals with a significance higher than 6 standard deviations the presence of a modulated signal with a period of 3.945 d, that we interpret as the orbital period of the binary system. The folded light curve shows a flat profile with a narrow full eclipse lasting ~3.5% of the orbital period. We requested phase-constrained XRT observations to obtain a more detailed characterization of the eclipse in the soft X-ray range. Adopting resonable guess values for the mass and radius of the companion star, we derive a semi-major orbital axis of ~31 R_sun, equivalent to ~1.8 times the radius of the companion star. From these estimates and from the duration of the eclipse we derive an orbital inclination between 55 and 60 degrees. The broad band time-averaged XRT+BAT spectrum is well modeled with a strongly absorbed flat power law, with absorbing column N_H=7x 10^22 cm^(-2) and photon index Gamma=0.5, modified by a high energy exponential cutoff at E_cut=14 keV.
We report on Nuclear Spectroscopic Telescope Array (NuSTAR), Neil Gehrels Swift Observatory (Swift) X-ray Telescope (XRT) and Swift Burst Alert Telescope (BAT) observations of IGR J16493-4348, a wind-fed Supergiant X-ray Binary (SGXB) showing signifi cant superorbital variability. From a discrete Fourier transform of the BAT light curve, we refine its superorbital period to be 20.058 $pm$ 0.007 days. The BAT dynamic power spectrum and a fractional root mean square analysis both show strong variations in the amplitude of the superorbital modulation, but no observed changes in the period were found. The superorbital modulation is significantly weaker between MJD 55,700 and MJD 56,300. The joint NuSTAR and XRT observations, which were performed near the minimum and maximum of one cycle of the 20 day superorbital modulation, show that the flux increases by more than a factor of two between superorbital minimum and maximum. We find no significant changes in the 3-50 keV pulse profiles between superorbital minimum and maximum, which suggests a similar accretion regime. Modeling the pulse-phase averaged spectra we find a possible Fe K$alpha$ emission line at 6.4 keV at superorbital maximum. The feature is not significant at superorbital minimum. While we do not observe any significant differences between the pulse-phase averaged spectral continua apart from the overall flux change, we find that the hardness ratio near the broad main peak of the pulse profile increases from superorbital minimum to maximum. This suggests the spectral shape hardens with increasing luminosity. We discuss different mechanisms that might drive the observed superorbital modulation.
103 - G. Cusumano , A. DA`i , A. Segreto 2020
We analysed 13 years of the Neil Gehrels Swift Observatory survey data collected on the High Mass X-ray Binary IGR J18214-1318. Performing the timing analysis we detected a periodic signal of 5.42 d. From the companion star characteristics we derived an average orbital separation of $sim 41 rm R_{odot}simeq 2 R_{star}$. The spectral type of the companion star (O9) and the tight orbital separation suggest that IGR~J18214-1318 is a wind accreting source with eccentricity lower than 0.17. The intensity profile folded at the orbital period shows a deep minimum compatible with an eclipse of the source by the companion star. In addition, we report on the broad-band 0.6--100 keV spectrum using data from XMM-Newton, NuSTAR, and Swift, applying self-consistent physical models. We find that the spectrum is well fitted either by a pure thermal Comptonization component, or, assuming that the source is a neutron star accreting above the critical regime, by a combined thermal and bulk-motion Comptonization model. In both cases, the presence of a local neutral absorption (possibly related to the thick wind of the companion star) is required.
We report the results from pulsations and spectral analysis of a large number of observations of the HMXB pulsar IGR J18027--2016 with {it Swift}--XRT, carried out at different orbital phases. In some orbital phases, as seen in different XRT observat ions, the X-ray intensity is found to vary by a large factor, of about $sim$50. In all the observations with sufficient number of source X-ray photons, pulsations have been detected around the previously known pulse period of $sim$140 sec, When detected, the pulse profiles do not show any significant variation over a flux difference of a factor of $sim$3. The absorption column density is found to be large before and after the eclipse. We discuss various possible reasons for intensity and spectral variations in IGR J18027--2016, such as clumpy wind and hydrodynamic instabilities.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا