ترغب بنشر مسار تعليمي؟ اضغط هنا

An alternative model for the origin of gaps in circumstellar disks

75   0   0.0 ( 0 )
 نشر من قبل Eduard I. Vorobyov
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Motivated by recent observational and numerical studies suggesting that collapsing protostellar cores may be replenished from the local environment, we explore the evolution of protostellar cores submerged in the external counter-rotating environment. These models predict the formation of counter-rotating disks with a deep gap in the gas surface density separating the inner disk (corotating with the star) and the outer counter-rotating disk. The properties of these gaps are compared to those of planet-bearing gaps that form in disks hosting giant planets. We employ numerical hydrodynamics simulations of collapsing cores that are replenished from the local counter-rotating environment, as well as numerical hydrodynamic simulations of isolated disks hosting giant planets, to derive the properties of the gaps that form in both cases. Our numerical simulations demonstrate that counter-rotating disks can form for a wide range of mass and angular momentum available in the local environment. The gap that separates both disks has a depletion factor smaller than 1%, can be located at a distance from ten to over a hundred AU from the star, and can propagate inward with velocity ranging from 1 AU/Myr to >100 AU/Myr. Unlike our previous conclusion, the gap can therefore be a long-lived phenomenon, comparable in some cases to the lifetime of the disk itself. For a proper choice of the planetary mass, the viscous alpha-parameter and the disk mass, the planet-bearing gaps and the gaps in counter-rotating disks may show a remarkable similarity in the gas density profile and depletion factor, which may complicate their observational differentiation.



قيم البحث

اقرأ أيضاً

85 - C. Pinte , D.J. Price , F. Menard 2020
We present evidence for localised deviations from Keplerian rotation, i.e., velocity kinks, in 8 of 18 circumstellar disks observed by the DSHARP program: DoAr 25, Elias 2-27, GW Lup, HD 143006, HD 163296, IM Lup, Sz 129 and WaOph 6. Most of the kink s are detected over a small range in both radial extent and velocity, suggesting a planetary origin, but for some of them foreground contamination prevents us from measuring their spatial and velocity extent. Because of the DSHARP limited spectral resolution and signal-to-noise in the 12CO J=2-1 line, as well as cloud contamination, the kinks are usually detected in only one spectral channel, and will require confirmation. The strongest circumstantial evidence for protoplanets in the absence of higher spectral resolution data and additional tracers is that, upon deprojection, we find that all of the candidate planets lie within a gap and/or at the end of a spiral detected in dust continuum emission. This suggests that a significant fraction of the dust gaps and spirals observed by ALMA in disks are caused by embedded protoplanets.
Debris disks are second generation dusty disks thought to be devoid of gas. However, this idea has been challenged in the last years by gas detections in some systems. We compiled a database of 301 debris disks and collected high--resolution optical spectra for $sim77%$ of them. From the analysis of these data we identified a group of 23 debris disks presenting several absorption features superimposed to the photospheric Ca II and Na I doublets. These absorptions could be due to circumstellar material or interstellar clouds. In order to discriminate between the two scenarios, we characterized each feature in terms of its radial velocity, equivalent width and column density. Additionally, we searched in the literature for local clouds in the line of sight of the stars, and looked for the presence of similar absorption features in nearby stars. Our study concludes that while all the objects present interstellar absorptions in their spectra, three objects show features more compatible with circumstellar origin: HD 110058 presents a stable circumstellar absorption, while HR 4796 and c Aql present variable absorption features likely due to exocometary activity. The minute-scale variability we detect towards c Aql is the shortest of this kind detected so far. The detection of circumstellar features in these objects is consistent with their near edge-on inclinations. We also provide evidence challenging previous claims of circumstellar gas detections for HR 6507. Given the properties of the sample, we speculate that transient gaseous events must be a common phenomenon among debris disks.
[Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process . We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. We highlight open questions related to (1) the development of a turbulent cascade in thin disks, and (2) the role of mode-mode coupling in setting the maximum angular momentum transport rate in thick disks.
Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution ($sim0.12$) ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are not detected. Fits of disk models to the visibilities lead to estimates of the location and shape of gaps and rings, the flux in each disk component, and the size of the disk. The dust substructures occur across a wide range of stellar mass and disk brightness. Disks with multiple rings tend to be more massive and more extended. The correlation between gap locations and widths, the intensity contrast between rings and gaps, and the separations of rings and gaps could all be explained if most gaps are opened by low-mass planets (super-Earths and Neptunes) in the condition of low disk turbulence ($alpha=10^{-4}$). The gap locations are not well correlated with the expected locations of CO and N$_2$ ice lines, so condensation fronts are unlikely to be a universal mechanism to create gaps and rings, though they may play a role in some cases.
100 - S. Heese 2017
Accurate temperature calculations for circumstellar disks are particularly important for their chemical evolution. Their temperature distribution is determined by the optical properties of the dust grains, which, among other parameters, depend on the ir radius. However, in most disk studies, only average optical properties and thus an average temperature is assumed to account for an ensemble of grains with different radii. We investigate the impact of subdividing the grain radius distribution into multiple sub-intervals on the resulting dust temperature distribution and spectral energy distribution (SED). These quantities were computed for two different scenarios: (1) Radius distribution represented by 16 logarithmically distributed radius intervals, and (2) radius distribution represented by a single grain species with averaged optical properties (reference). Within the considered parameter range, i.e., of grain radii between 5 nm and 1 mm and an optically thin and thick disk with a parameterized density distribution, we obtain the following results: In optically thin disk regions, the temperature spread can be as large as ~63% and the relative grain surface below a certain temperature is lower than in the reference disk. With increasing optical depth, the difference in the midplane temperature and the relative grain surface below a certain temperature decreases. Furthermore, below ~20K, this fraction is higher for the reference disk than for the case of multiple grain radii, while it shows the opposite behavior for temperatures above this threshold. The thermal emission in the case of multiple grain radii at short wavelengths is stronger than for the reference disk. The freeze-out radius is a function of grain radius, spanning a radial range between the coldest and warmest grain species of ~30AU.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا