ترغب بنشر مسار تعليمي؟ اضغط هنا

Gaps and Rings in an ALMA Survey of Disks in the Taurus Star-forming Region

96   0   0.0 ( 0 )
 نشر من قبل Feng Long
 تاريخ النشر 2018
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Rings are the most frequently revealed substructure in ALMA dust observations of protoplanetary disks, but their origin is still hotly debated. In this paper, we identify dust substructures in 12 disks and measure their properties to investigate how they form. This subsample of disks is selected from a high-resolution ($sim0.12$) ALMA 1.33 mm survey of 32 disks in the Taurus star-forming region, which was designed to cover a wide range of sub-mm brightness and to be unbiased to previously known substructures. While axisymmetric rings and gaps are common within our sample, spiral patterns and high contrast azimuthal asymmetries are not detected. Fits of disk models to the visibilities lead to estimates of the location and shape of gaps and rings, the flux in each disk component, and the size of the disk. The dust substructures occur across a wide range of stellar mass and disk brightness. Disks with multiple rings tend to be more massive and more extended. The correlation between gap locations and widths, the intensity contrast between rings and gaps, and the separations of rings and gaps could all be explained if most gaps are opened by low-mass planets (super-Earths and Neptunes) in the condition of low disk turbulence ($alpha=10^{-4}$). The gap locations are not well correlated with the expected locations of CO and N$_2$ ice lines, so condensation fronts are unlikely to be a universal mechanism to create gaps and rings, though they may play a role in some cases.



قيم البحث

اقرأ أيضاً

We present a high-resolution ($sim0.12$, $sim16$ au, mean sensitivity of $50~mu$Jy~beam$^{-1}$ at 225 GHz) snapshot survey of 32 protoplanetary disks around young stars with spectral type earlier than M3 in the Taurus star-forming region using Atacam a Large Millimeter Array (ALMA). This sample includes most mid-infrared excess members that were not previously imaged at high spatial resolution, excluding close binaries and highly extincted objects, thereby providing a more representative look at disk properties at 1--2 Myr. Our 1.3 mm continuum maps reveal 12 disks with prominent dust gaps and rings, 2 of which are around primary stars in wide binaries, and 20 disks with no resolved features at the observed resolution (hereafter smooth disks), 8 of which are around the primary star in wide binaries. The smooth disks were classified based on their lack of resolved substructures, but their most prominent property is that they are all compact with small effective emission radii ($R_{rm eff,95%} lesssim 50$ au). In contrast, all disks with $R_{rm eff,95%}$ of at least 55 au in our sample show detectable substructures. Nevertheless, their inner emission cores (inside the resolved gaps) have similar peak brightness, power law profiles, and transition radii to the compact smooth disks, so the primary difference between these two categories is the lack of outer substructures in the latter. These compact disks may lose their outer disk through fast radial drift without dust trapping, or they might be born with small sizes. The compact dust disks, as well as the inner disk cores of extended ring disks, that look smooth at the current resolution will likely show small-scale or low-contrast substructures at higher resolution. The correlation between disk size and disk luminosity correlation demonstrates that some of the compact disks are optically thick at millimeter wavelengths.
We present the initial results from a survey for planetary-mass brown dwarfs in the Taurus star-forming region. We have identified brown dwarf candidates in Taurus using proper motions and photometry from several ground- and space-based facilities. T hrough spectroscopy of some of the more promising candidates, we have found 18 new members of Taurus. They have spectral types ranging from mid M to early L and they include the four faintest known members in extinction-corrected K_s, which should have masses as low as ~4-5 M_Jup according to evolutionary models. Two of the coolest new members (M9.25, M9.5) have mid-IR excesses that indicate the presence of disks. Two fainter objects with types of M9-L2 and M9-L3 also have red mid-IR colors relative to photospheres at <=L0, but since the photospheric colors are poorly defined at >L0, it is unclear whether they have excesses from disks. We also have obtained spectra of candidate members of the IC 348 and NGC 1333 clusters in Perseus that were identified by Luhman et al. (2016). Eight candidates are found to be probable members, three of which are among the faintest and least-massive known members of the clusters (~5 M_Jup).
384 - Ch. Rab , I. Kamp , C. Dominik 2020
Spatially resolved continuum observations of planet-forming disks show prominent ring and gap structures in their dust distribution. However, the picture from gas observations is much less clear and constraints on the radial gas density structure (i. e. gas gaps) remain rare and uncertain. We want to investigate the importance of thermo-chemical processes for the interpretation of high-spatial-resolution gas observations of planet-forming disks and their impact on derived gas properties. We apply the radiation thermo-chemical disk code ProDiMo (PROtoplanetary DIsk MOdel) to model self-consistently the dust and gas disk of HD 163296, using the DSHARP gas and dust observations. With this model we investigate the impact of dust gaps and gas gaps, considering chemistry and heating/cooling processes, on the observables and the derived gas properties. We find distinct peaks in the radial line intensity profiles of the CO line data of HD 163296 at the location of the dust gaps. Our model indicates that those peaks are not only a consequence of a gas temperature increase within the gaps but are mainly caused by the absorption of line emission from the back side of the disk by the dust rings. For two of the three prominent dust gaps in HD 163296, we find that thermo-chemical effects are negligible for deriving density gradients via measurements of the rotation velocity. However, for the gap with the highest dust depletion, the temperature gradient can be dominant and needs to be considered to derive accurate gas density profiles. Self-consistent gas and dust thermo-chemical modelling in combination with high-quality observations of multiple molecules are necessary to accurately derive gas gap depths and shapes. This is crucial to determine the origin of gaps and rings in planet-forming disks and to improve the mass estimates of forming planets if they are the cause of the gap.
277 - G. Aresu , I. Kamp , R. Meijerink 2014
The structure of protoplanetary disks is thought to be linked to the temperature and chemistry of their dust and gas. Whether the disk is flat or flaring depends on the amount of radiation that it absorbs at a given radius, and on the efficiency with which this is converted into thermal energy. The understanding of these heating and cooling processes is crucial to provide a reliable disk structure for the interpretation of dust continuum emission and gas line fluxes. Especially in the upper layers of the disk, where gas and dust are thermally decoupled, the infrared line emission is strictly related to the gas heating/cooling processes. We aim to study the thermal properties of the disk in the oxygen line emission region, and to investigate the relative importance of X-ray (1-120 Angstrom) and far-UV radiation (FUV, 912-2070 Angstrom) for the heating balance there. We use [OI] 63 micron line fluxes observed in a sample of protoplanetary disks of the Taurus/Auriga star forming region and compare it to the model predictions presented in our previous work. The data were obtained with the PACS instrument on board the Herschel Space Observatory as part of the Herschel Open Time Key Program GASPS (GAS in Protoplanetary diskS), published in Howard et al. (2013). Our theoretical grid of disk models can reproduce the [OI] absolute fluxes and predict a correlation between [OI] and the sum Lx+Lfuv. The data show no correlation between the [OI] line flux and the X-ray luminosity, the FUV luminosity or their sum. The data show that the FUV or X-ray radiation has no notable impact on the region where the [OI] line is formed. This is in contrast with what is predicted from our models. Possible explanations are that the disks in Taurus are less flaring than the hydrostatic models predict, and/or that other disk structure aspects that were left unchanged in our models are important. ..abridged..
Far-infrared and (sub)millimeter fluxes can be used to study dust in protoplanetary disks, the building blocks of planets. Here, we combine observations from the Herschel Space Observatory with ancillary data of 284 protoplanetary disks in the Taurus , Chamaeleon I, and Ophiuchus star-forming regions, covering from the optical to mm/cm wavelengths. We analyze their spectral indices as a function of wavelength and determine their (sub)millimeter slopes when possible. Most disks display observational evidence of grain growth, in agreement with previous studies. No correlation is found between other tracers of disk evolution and the millimeter spectral indices. A simple disk model is used to fit these sources, and we derive posterior distributions for the optical depth at 1.3 mm and 10 au, the disk temperature at this same radius, and the dust opacity spectral index. We find the fluxes at 70 microns to correlate strongly with disk temperatures at 10 au, as derived from these simple models. We find tentative evidence for spectral indices in Chamaeleon I being steeper than those of disks in Taurus/Ophiuchus, although more millimeter observations are needed to confirm this trend and identify its possible origin. Additionally, we determine the median spectral energy distribution of each region and find them to be similar across the entire wavelength range studied, possibly due to the large scatter in disk properties and morphologies.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا