ترغب بنشر مسار تعليمي؟ اضغط هنا

Spread of the dust temperature distribution in circumstellar disks

101   0   0.0 ( 0 )
 نشر من قبل Stefan Heese
 تاريخ النشر 2017
  مجال البحث فيزياء
والبحث باللغة English
 تأليف S. Heese




اسأل ChatGPT حول البحث

Accurate temperature calculations for circumstellar disks are particularly important for their chemical evolution. Their temperature distribution is determined by the optical properties of the dust grains, which, among other parameters, depend on their radius. However, in most disk studies, only average optical properties and thus an average temperature is assumed to account for an ensemble of grains with different radii. We investigate the impact of subdividing the grain radius distribution into multiple sub-intervals on the resulting dust temperature distribution and spectral energy distribution (SED). These quantities were computed for two different scenarios: (1) Radius distribution represented by 16 logarithmically distributed radius intervals, and (2) radius distribution represented by a single grain species with averaged optical properties (reference). Within the considered parameter range, i.e., of grain radii between 5 nm and 1 mm and an optically thin and thick disk with a parameterized density distribution, we obtain the following results: In optically thin disk regions, the temperature spread can be as large as ~63% and the relative grain surface below a certain temperature is lower than in the reference disk. With increasing optical depth, the difference in the midplane temperature and the relative grain surface below a certain temperature decreases. Furthermore, below ~20K, this fraction is higher for the reference disk than for the case of multiple grain radii, while it shows the opposite behavior for temperatures above this threshold. The thermal emission in the case of multiple grain radii at short wavelengths is stronger than for the reference disk. The freeze-out radius is a function of grain radius, spanning a radial range between the coldest and warmest grain species of ~30AU.



قيم البحث

اقرأ أيضاً

132 - B. Riaz , M. Honda , H. Campins 2011
We present a study of the radial distribution of dust species in young brown dwarf disks. Our work is based on a compositional analysis of the 10 and 20 micron silicate emission features for brown dwarfs in the Taurus-Auriga star-forming region. A fu ndamental finding of our work is that brown dwarfs exhibit stronger signs of dust processing in the cold component of the disk, compared to the higher mass T Tauri stars in Taurus. For nearly all of our targets, we find a flat disk structure, which is consistent with the stronger signs of dust processing observed in these disks. For the case of one brown dwarf, 2M04230607, we find the forsterite mass fraction to be a factor of ~3 higher in the outer disk compared to the inner disk region. Simple large-scale radial mixing cannot account for this gradient in the dust chemical composition, and some local crystalline formation mechanism may be effective in this disk. The relatively high abundance of crystalline silicates in the outer cold regions of brown dwarf disks provides an interesting analogy to comets. In this context, we have discussed the applicability of the various mechanisms that have been proposed for comets on the formation and the outward transport of high-temperature material. We also present Chandra X-ray observations for two Taurus brown dwarfs, 2M04414825 and CFHT-BD-Tau 9. We find 2M04414825, which has a ~12% crystalline mass fraction, to be more than an order of magnitude brighter in X-ray than CFHT-BD-Tau 9, which has a ~35% crystalline mass fraction. Combining with previous X-ray data, we find the inner disk crystalline mass fractions to be anti-correlated with the X-ray strength.
[Abridged] Star and planet formation are the complex outcomes of gravitational collapse and angular momentum transport mediated by protostellar and protoplanetary disks. In this review we focus on the role of gravitational instability in this process . We begin with a brief overview of the observational evidence for massive disks that might be subject to gravitational instability, and then highlight the diverse ways in which the instability manifests itself in protostellar and protoplanetary disks: the generation of spiral arms, small scale turbulence-like density fluctuations, and fragmentation of the disk itself. We present the analytic theory that describes the linear growth phase of the instability, supplemented with a survey of numerical simulations that aim to capture the non-linear evolution. We emphasize the role of thermodynamics and large scale infall in controlling the outcome of the instability. Despite apparent controversies in the literature, we show a remarkable level of agreement between analytic predictions and numerical results. We highlight open questions related to (1) the development of a turbulent cascade in thin disks, and (2) the role of mode-mode coupling in setting the maximum angular momentum transport rate in thick disks.
Spatial distribution and growth of dust in a clumpy protoplanetary disk subject to vigorous gravitational instability and fragmentation is studied numerically with sub-au resolution using the FEOSAD code. Hydrodynamics equations describing the evolut ion of self-gravitating and viscous protoplanetary disks in the thin-disk limit were modified to include a dust component consisting of two parts: sub-micron-sized dust and grown dust with a variable maximum radius. The conversion of small to grown dust, dust growth, friction of dust with gas, and dust self-gravity were also considered. We found that the disk appearance is notably time-variable with spiral arms, dusty rings, and clumps, constantly forming, evolving, and decaying. As a consequence, the total dust-to-gas mass ratio is highly non-homogeneous throughout the disk extent, showing order-of-magnitude local deviations from the canonical 1:100 value. Gravitationally bound clumps formed through gravitational fragmentation have a velocity pattern that deviates notably from the Keplerian rotation. Small dust is efficiently converted into grown dust in the clump interiors, reaching a maximum radius of several decimeters. Concurrently, grown dust drifts towards the clump center forming a massive compact central condensation (70-100 $M_oplus$). We argue that protoplanets may form in the interiors of inward migrating clumps before they disperse through the action of tidal torques. We foresee the formation of protoplanets at orbital distances of several tens of au with initial masses of gas and dust in the protoplanetary seed in the (0.25-1.6) $M_{rm Jup}$ and (1.0-5.5) $M_oplus$ limits, respectively. The final masses of gas and dust in the protoplanets may however be much higher due to accretion from surrounding massive metal-rich disks/envelopes.
We have conducted a survey of 17 wide (> 100 AU) young binary systems in Taurus with the Atacama Large Millimeter Array (ALMA) at two wavelengths. The observations were designed to measure the masses of circumstellar disks in these systems as an aid to understanding the role of multiplicity in star and planet formation. The ALMA observations had sufficient resolution to localize emission within the binary system. Disk emission was detected around all primaries and ten secondaries, with disk masses as low as $10^{-4} M_{odot}$. We compare the properties of our sample to the population of known disks in Taurus and find that the disks from this binary sample match the scaling between stellar mass and millimeter flux of $F_{mm} propto M_{ast}^{1.5-2.0}$ to within the scatter found in previous studies. We also compare the properties of the primaries to those of the secondaries and find that the secondary/primary stellar and disk mass ratios are not correlated; in three systems, the circumsecondary disk is more massive than the circumprimary disk, counter to some theoretical predictions.
Motivated by recent observational and numerical studies suggesting that collapsing protostellar cores may be replenished from the local environment, we explore the evolution of protostellar cores submerged in the external counter-rotating environment . These models predict the formation of counter-rotating disks with a deep gap in the gas surface density separating the inner disk (corotating with the star) and the outer counter-rotating disk. The properties of these gaps are compared to those of planet-bearing gaps that form in disks hosting giant planets. We employ numerical hydrodynamics simulations of collapsing cores that are replenished from the local counter-rotating environment, as well as numerical hydrodynamic simulations of isolated disks hosting giant planets, to derive the properties of the gaps that form in both cases. Our numerical simulations demonstrate that counter-rotating disks can form for a wide range of mass and angular momentum available in the local environment. The gap that separates both disks has a depletion factor smaller than 1%, can be located at a distance from ten to over a hundred AU from the star, and can propagate inward with velocity ranging from 1 AU/Myr to >100 AU/Myr. Unlike our previous conclusion, the gap can therefore be a long-lived phenomenon, comparable in some cases to the lifetime of the disk itself. For a proper choice of the planetary mass, the viscous alpha-parameter and the disk mass, the planet-bearing gaps and the gaps in counter-rotating disks may show a remarkable similarity in the gas density profile and depletion factor, which may complicate their observational differentiation.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا