ﻻ يوجد ملخص باللغة العربية
We develop a method to efficiently calculate trial wave functions for quantum Hall systems which involve projection onto the lowest Landau level. The method essentially replaces lowest Landau level projection by projection onto the $M$ lowest eigenstates of a suitably chosen hamiltonian acting within the lowest Landau level. The resulting energy projection is a controlled approximation to the exact lowest Landau level projection which improves with increasing $M$. It allows us to study projected trial wave functions for system sizes close to the maximal sizes that can be reached by exact diagonalization and can be straightforwardly applied in any geometry. As a first application and test case, we study a class of trial wave functions first proposed by Girvin and Jach, which are modifications of the Laughlin states involving a single real parameter. While these modified Laughlin states probably represent the same universality class exemplified by the Laughlin wave functions, we show by extensive numerical work for systems on the sphere and torus that they provide a significant improvement of the variational energy, overlap with the exact wave function and properties of the entanglement spectrum.
We study lattice wave functions obtained from the SU(2)$_1$ Wess-Zumino-Witten conformal field theory. Following Moore and Reads construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields.
We use conformal field theory to construct model wavefunctions for a gapless interface between latti
We investigate the nature of the plasma analogy for the Laughlin wave function on a torus describing the quantum Hall plateau at $ u=frac{1}{q}$. We first establish, as expected, that the plasma is screening if there are no short nontrivial paths aro
We conjecture that the counting of the levels in the orbital entanglement spectra (OES) of finite-sized Laughlin Fractional Quantum Hall (FQH) droplets at filling $ u=1/m$ is described by the Haldane statistics of particles in a box of finite size. T
Interfaces between topologically distinct phases of matter reveal a remarkably rich phenomenology. We study the experimentally relevant interface between a Laughlin phase at filling factor $ u=1/3$ and a Halperin 332 phase at filling factor $ u=2/5$.