ﻻ يوجد ملخص باللغة العربية
We conjecture that the counting of the levels in the orbital entanglement spectra (OES) of finite-sized Laughlin Fractional Quantum Hall (FQH) droplets at filling $ u=1/m$ is described by the Haldane statistics of particles in a box of finite size. This principle explains the observed deviations of the OES counting from the edge-mode conformal field theory counting and directly provides us with a topological number of the FQH states inaccessible in the thermodynamic limit- the boson compactification radius. It also suggests that the entanglement gap in the Coulomb spectrum in the conformal limit protects a universal quantity- the statistics of the state. We support our conjecture with ample numerical checks.
We study lattice wave functions obtained from the SU(2)$_1$ Wess-Zumino-Witten conformal field theory. Following Moore and Reads construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields.
We study numerically the geometric entanglement in the Laughlin wave function, which is of great importance in condensed matter physics. The Slater determinant having the largest overlap with the Laughlin wave function is constructed by an iterative
We use conformal field theory to construct model wavefunctions for a gapless interface between latti
We study the quantum entanglement structure of integer quantum Hall states via the reduced density matrix of spatial subregions. In particular, we examine the eigenstates, spectrum and entanglement entropy (EE) of the density matrix for various groun
An Anderson impurity in a Hubbard model on chains with finite length is studied using the density-matrix renormalization group (DMRG) technique. In the first place, we analyzed how the reduction of electron density from half-filling to quarter-fillin