ترغب بنشر مسار تعليمي؟ اضغط هنا

Model wavefunctions for an interface between lattice Laughlin and Moore-Read states

70   0   0.0 ( 0 )
 نشر من قبل B{\\l}azej Jaworowski
 تاريخ النشر 2020
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use conformal field theory to construct model wavefunctions for a gapless interface between latti



قيم البحث

اقرأ أيضاً

This work concerns Ising quasiholes in Moore-Read type lattice wave functions derived from conformal field theory. We commence with constructing Moore-Read type lattice states and then add quasiholes to them. By use of Metropolis Monte Carlo simulati ons, we analyze the features of the quasiholes, such as their size, shape, charge, and braiding properties. The braiding properties, which turn out to be the same as in the continuum Moore-Read state, demonstrate the topological attributes of the Moore-Read lattice states in a direct way. We also derive parent Hamiltonians for which the states with quasiholes included are ground states. One advantage of these Hamiltonians lies therein that we can now braid the quasiholes just by changing the coupling strengths in the Hamiltonian since the Hamiltonian is a function of the positions of the quasiholes. The methodology exploited in this article can also be used to construct other kinds of lattice fractional quantum Hall models containing quasiholes, for example investigation of Fibonacci quasiholes in lattice Read-Rezayi states.
Moore-Read states can be expressed as conformal blocks of the underlying rational conformal field theory, which provides a well explored description for the insertion of quasiholes. It is known, however, that quasielectrons are more difficult to desc ribe in continuous systems, since the natural guess for how to construct them leads to a singularity. In this work, we show that the singularity problem does not arise for lattice Moore-Read states. This allows us to construct Moore-Read Pfaffian states on lattices for filling fraction 5/2 with both quasiholes and quasielectrons in a simple way. We investigate the density profile, charge, size and braiding properties of the anyons by means of Monte Carlo simulations. Further we derive an exact few-body parent Hamiltonian for the states. Finally, we compare our results to the density profile, charge and shape of anyons in the Kapit-Mueller model by means of exact diagonalization.
We study lattice wave functions obtained from the SU(2)$_1$ Wess-Zumino-Witten conformal field theory. Following Moore and Reads construction, the Kalmeyer-Laughlin fractional quantum Hall state is defined as a correlation function of primary fields. By an additional insertion of Kac-Moody currents, we associate a wave function to each state of the conformal field theory. These wave functions span the complete Hilbert space of the lattice system. On the cylinder, we study global properties of the lattice states analytically and correlation functions numerically using a Metropolis Monte Carlo method. By comparing short-range bulk correlations, numerical evidence is provided that the states with one current operator represent edge states in the thermodynamic limit. We show that the edge states with one Kac-Moody current of lowest order have a good overlap with low-energy excited states of a local Hamiltonian, for which the Kalmeyer-Laughlin state approximates the ground state. For some states, exact parent Hamiltonians are derived on the cylinder. These Hamiltonians are SU(2) invariant and nonlocal with up to four-body interactions.
We study the motion of an interface separating two regions with different electronic orders following a short duration pump that drives the system out of equilibrium. Using a generalized Ginzburg-Landau approach and assuming that the main effect of t he nonequilibrium drive is to transiently heat the system we address the question of the direction of interface motion; in other words, which ordered region expands and which contracts after the pump. Our analysis includes the effects of differences in free energy landscape and in order parameter dynamics and identifies circumstances in which the drive may act to increase the volume associated with the subdominant order, for example when the subdominant order has a second order free energy landscape while the dominant order has a first order one.
We conjecture that the counting of the levels in the orbital entanglement spectra (OES) of finite-sized Laughlin Fractional Quantum Hall (FQH) droplets at filling $ u=1/m$ is described by the Haldane statistics of particles in a box of finite size. T his principle explains the observed deviations of the OES counting from the edge-mode conformal field theory counting and directly provides us with a topological number of the FQH states inaccessible in the thermodynamic limit- the boson compactification radius. It also suggests that the entanglement gap in the Coulomb spectrum in the conformal limit protects a universal quantity- the statistics of the state. We support our conjecture with ample numerical checks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا