ﻻ يوجد ملخص باللغة العربية
In orbital-free density functional theory the kinetic potential (KP), the functional derivative of the kinetic energy density functional, appears in the Euler equation for the electron density and may be more amenable to simple approximations. We study properties of two solid-state systems, Al and Si, using two nonlocal KPs that gave good results for atoms. Very accurate results are found for Al, but results for Si are much less satisfactory, illustrating the general need for a better treatment of extended covalent systems. A different integration pathway in the KP formalism may prove useful in attacking this fundamental problem.
Orbital-Free Density Functional Theory (OF-DFT) promises to describe the electronic structure of very large quantum systems, being its computational cost linear with the system size. However, the OF-DFT accuracy strongly depends on the approximation
We present an implementation in a linear-scaling density-functional theory code of an electronic enthalpy method, which has been found to be natural and efficient for the ab initio calculation of finite systems under hydrostatic pressure. Based on a
We demonstrate that Daubechies wavelets can be used to construct a minimal set of optimized localized contracted basis functions in which the Kohn-Sham orbitals can be represented with an arbitrarily high, controllable precision. Ground state energie
First-principles calculations combining density-functional theory and continuum solvation models enable realistic theoretical modeling and design of electrochemical systems. When a reaction proceeds in such systems, the number of electrons in the por
Kinetic energy (KE) approximations are key elements in orbital-free density functional theory. To date, the use of non-local functionals, possibly employing system dependent parameters, has been considered mandatory in order to obtain satisfactory ac