ﻻ يوجد ملخص باللغة العربية
The exploitation of present and future synoptic (multi-band and multi-epoch) surveys requires an extensive use of automatic methods for data processing and data interpretation. In this work, using data extracted from the Catalina Real Time Transient Survey (CRTS), we investigate the classification performance of some well tested methods: Random Forest, MLPQNA (Multi Layer Perceptron with Quasi Newton Algorithm) and K-Nearest Neighbors, paying special attention to the feature selection phase. In order to do so, several classification experiments were performed. Namely: identification of cataclysmic variables, separation between galactic and extra-galactic objects and identification of supernovae.
Astronomy has entered the multi-messenger data era and Machine Learning has found widespread use in a large variety of applications. The exploitation of synoptic (multi-band and multi-epoch) surveys, like LSST (Legacy Survey of Space and Time), requi
The advancement of technology has resulted in a rapid increase in supernova (SN) discoveries. The Subaru/Hyper Suprime-Cam (HSC) transient survey, conducted from fall 2016 through spring 2017, yielded 1824 SN candidates. This gave rise to the need fo
Upcoming astronomical surveys such as the Large Synoptic Survey Telescope (LSST) will rely on photometric classification to identify the majority of the transients and variables that they discover. We present a set of techniques for photometric class
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will b
Machine learning algorithms are highly useful for the classification of time series data in astronomy in this era of peta-scale public survey data releases. These methods can facilitate the discovery of new unknown events in most astrophysical areas,