ﻻ يوجد ملخص باللغة العربية
Astronomy has entered the multi-messenger data era and Machine Learning has found widespread use in a large variety of applications. The exploitation of synoptic (multi-band and multi-epoch) surveys, like LSST (Legacy Survey of Space and Time), requires an extensive use of automatic methods for data processing and interpretation. With data volumes in the petabyte domain, the discrimination of time-critical information has already exceeded the capabilities of human operators and crowds of scientists have extreme difficulty to manage such amounts of data in multi-dimensional domains. This work is focused on an analysis of critical aspects related to the approach, based on Machine Learning, to variable sky sources classification, with special care to the various types of Supernovae, one of the most important subjects of Time Domain Astronomy, due to their crucial role in Cosmology. The work is based on a test campaign performed on simulated data. The classification was carried out by comparing the performances among several Machine Learning algorithms on statistical parameters extracted from the light curves. The results make in evidence some critical aspects related to the data quality and their parameter space characterization, propaedeutic to the preparation of processing machinery for the real data exploitation in the incoming decade.
The commissioning team for the Vera C. Rubin observatory is planning a set of engineering and science verification observations with the Legacy Survey of Space and Time (LSST) commissioning camera and then the Rubin Observatory LSST Camera. The time
The exploitation of present and future synoptic (multi-band and multi-epoch) surveys requires an extensive use of automatic methods for data processing and data interpretation. In this work, using data extracted from the Catalina Real Time Transient
Strong lensing by galaxy clusters can be used to significantly expand the survey reach, thus allowing observation of magnified high-redshift supernovae that otherwise would remain undetected. Strong lensing can also provide multiple images of the gal
The advancement of technology has resulted in a rapid increase in supernova (SN) discoveries. The Subaru/Hyper Suprime-Cam (HSC) transient survey, conducted from fall 2016 through spring 2017, yielded 1824 SN candidates. This gave rise to the need fo
Survey telescopes such as the Vera C. Rubin Observatory will increase the number of observed supernovae (SNe) by an order of magnitude, discovering millions of events; however, it is impossible to spectroscopically confirm the class for all the SNe d