ﻻ يوجد ملخص باللغة العربية
Future surveys such as the Legacy Survey of Space and Time (LSST) of the Vera C. Rubin Observatory will observe an order of magnitude more astrophysical transient events than any previous survey before. With this deluge of photometric data, it will be impossible for all such events to be classified by humans alone. Recent efforts have sought to leverage machine learning methods to tackle the challenge of astronomical transient classification, with ever improving success. Transformers are a recently developed deep learning architecture, first proposed for natural language processing, that have shown a great deal of recent success. In this work we develop a new transformer architecture, which uses multi-head self attention at its core, for general multi-variate time-series data. Furthermore, the proposed time-series transformer architecture supports the inclusion of an arbitrary number of additional features, while also offering interpretability. We apply the time-series transformer to the task of photometric classification, minimising the reliance of expert domain knowledge for feature selection, while achieving results comparable to state-of-the-art photometric classification methods. We achieve a weighted logarithmic-loss of 0.507 on imbalanced data in a representative setting using data from the Photometric LSST Astronomical Time-Series Classification Challenge (PLAsTiCC). Moreover, we achieve a micro-averaged receiver operating characteristic area under curve of 0.98 and micro-averaged precision-recall area under curve of 0.87.
Next-generation surveys like the Legacy Survey of Space and Time (LSST) on the Vera C. Rubin Observatory will generate orders of magnitude more discoveries of transients and variable stars than previous surveys. To prepare for this data deluge, we de
Upcoming astronomical surveys such as the Large Synoptic Survey Telescope (LSST) will rely on photometric classification to identify the majority of the transients and variables that they discover. We present a set of techniques for photometric class
We describe the simulated data sample for the Photometric LSST Astronomical Time Series Classification Challenge (PLAsTiCC), a publicly available challenge to classify transient and variable events that will be observed by the Large Synoptic Survey T
Classification of transient and variable light curves is an essential step in using astronomical observations to develop an understanding of their underlying physical processes. However, upcoming deep photometric surveys, including the Large Synoptic
The growing field of large-scale time domain astronomy requires methods for probabilistic data analysis that are computationally tractable, even with large datasets. Gaussian Processes are a popular class of models used for this purpose but, since th