ﻻ يوجد ملخص باللغة العربية
To study the superconducting gap structure of BiS$_2$-based layered compound NdO$_{0.71}$F$_{0.29}$BiS$_{2}$ ($T$$_{rm c}$ = 5 K), we measured the thermal conductivity $kappa$, which is a sensitive probe of the low-energy quasiparticle spectrum. In the absence of a magnetic field, there is only a very small residual linear term in the thermal conductivity $kappa_{0}$/$T$ at $T$ $rightarrow$ 0, indicating the absence of a residual normal fluid, expected for nodal superconductors. Moreover, the applied magnetic field hardly affects the thermal conductivity in the wide range of the vortex state, indicating the absence of Doppler shifted quasiparticles. These results provide evidence that NdO$_{0.71}$F$_{0.29}$BiS$_{2}$ is fully gapped superconductor. The obtained gap structure, along with the robustness of the superconductivity against the impurity, suggest a conventional $s$-wave superconducting state in NdO$_{0.71}$F$_{0.29}$BiS$_{2}$.
We performed thermal conductivity measurements on a single crystal of the ferromagnetic superconductorUCoGe under magnetic field. Two different temperature dependencies of the thermal conductivity are observed, for H//b linear at low magnetic field a
Thermal transport measurements have been performed on single-crystalline Co-doped BaFe2As2 down to 0.1 K and under magnetic fields up to 7 T. Significant peak anomalies are observed in both thermal conductivity and thermal Hall conductivity below Tc
We report $^{121/123}$Sb nuclear quadrupole resonance (NQR) and $^{51}$V nuclear magnetic resonance (NMR) measurements on kagome metal CsV$_3$Sb$_5$ with $T_{rm c}=2.5$ K. Both $^{51}$V NMR spectra and $^{121/123}$Sb NQR spectra split after a charge
We report the $^{121/123}$Sb-NMR/nuclear quadrupole resonance (NQR) measurements on the newly-discovered superconductor BaTi$_2$Sb$_2$O with a two-dimensional Ti$_2$O square-net layer formed with Ti$^{3+}$ (3$d^1$). NQR measurements revealed that the
We have systematically investigated the crystal structure, magnetic susceptibility, and electrical resistivity of the BiS2-based superconductor LaO0.5F0.5Bi(S1-xSex)2 (x = 0 - 0.7). With expanding lattice volume by Se substitution, bulk superconducti