ترغب بنشر مسار تعليمي؟ اضغط هنا

Possible Sign-Reversing s-Wave Superconductivity in Co-Doped BaFe2As2 Proved by Thermal Transport Measurements

138   0   0.0 ( 0 )
 نشر من قبل Yo Machida
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Thermal transport measurements have been performed on single-crystalline Co-doped BaFe2As2 down to 0.1 K and under magnetic fields up to 7 T. Significant peak anomalies are observed in both thermal conductivity and thermal Hall conductivity below Tc as an indication of the enhancement of the quasiparticle mean-free path. Moreover, we find a sizable residual T-linear term in thermal conductivity, possibly due to a finite quasiparticle density of states in the superconducting gap induced by impurity pair breaking. Our findings support a pairing symmetry compatible with the theoretically predicted sign-reversing s-wave state.



قيم البحث

اقرأ أيضاً

To study the superconducting gap structure of BiS$_2$-based layered compound NdO$_{0.71}$F$_{0.29}$BiS$_{2}$ ($T$$_{rm c}$ = 5 K), we measured the thermal conductivity $kappa$, which is a sensitive probe of the low-energy quasiparticle spectrum. In t he absence of a magnetic field, there is only a very small residual linear term in the thermal conductivity $kappa_{0}$/$T$ at $T$ $rightarrow$ 0, indicating the absence of a residual normal fluid, expected for nodal superconductors. Moreover, the applied magnetic field hardly affects the thermal conductivity in the wide range of the vortex state, indicating the absence of Doppler shifted quasiparticles. These results provide evidence that NdO$_{0.71}$F$_{0.29}$BiS$_{2}$ is fully gapped superconductor. The obtained gap structure, along with the robustness of the superconductivity against the impurity, suggest a conventional $s$-wave superconducting state in NdO$_{0.71}$F$_{0.29}$BiS$_{2}$.
57Fe Mossbauer spectroscopy measurements are presented in the underdoped Ba(Fe{1-x}Cox)2As2 series for x=0.014 (T_c < 1.4K) and x=0.03 and 0.045 (T_c ~ 2 and 12K respectively). The spectral shapes in the so-called spin-density wave (SDW) phase are in terpreted in terms of incommensurate modulation of the magnetic structure, and allow the shape of the modulation to be determined. In undoped BaFe2As2, the magnetic structure is commensurate, and we find that incommensurability is present at the lowest doping level (x=0.014). As Co doping increases, the low temperature modulation progressively loses its squaredness and tends to a sine-wave. The same trend occurs for a given doping level, as temperature increases. We find that a magnetic hyperfine component persists far above the SDW transition, its intensity being progressively tranferred to a paramagnetic component on heating.
We present a comprehensive study of the low-temperature heat capacity and thermal expansion of single crystals of the hole-doped Ba1-xKxFe2As2 series (0<x<1) and the end-members RbFe2As2 and CsFe2As2. A large increase of the Sommerfeld coefficient is observed with both decreasing band filling and isovalent substitution (K, Rb, Cs) revealing a strong enhancement of electron correlations and the possible proximity of these materials to a Mott insulator. This trend is well reproduced theoretically by our Density-Functional Theory + Slave-Spin (DFT+SS) calculations, confirming that 122-iron pnictides are effectively Hund metals, in which sizable Hunds coupling and orbital selectivity are the key ingredients for tuning correlations. We also find direct evidence for the existence of a coherence-incoherence crossover between a low-temperature heavy Fermi liquid and a highly incoherent high-temperature regime similar to heavy fermion systems. In the superconducting state, clear signatures of multiband superconductivity are observed with no evidence for nodes in the energy gaps, ruling out the existence of a doping-induced change of symmetry (from s to d-wave). We argue that the disappearance of the electron band in the range 0.4<x<1.0 is accompanied by a strong-to-weak coupling crossover and that this shallow band remains involved in the superconducting pairing, although its contribution to the normal state fades away. Differences between hole- and electron-doped BaFe2As2 series are emphasized and discussed in terms of strong pair breaking by potential scatterers beyond the Born limit.
We argue that the newly discovered superconductivity in a nearly magnetic, Fe-based layered compound is unconventional and mediated by antiferromagnetic spin fluctuations, though different from the usual superexchange and specific to this compound. T his resulting state is an example of extended s-wave pairing with a sign reversal of the order parameter between different Fermi surface sheets. The main role of doping in this scenario is to lower the density of states and suppress the pair-breaking ferromagnetic fluctuations.
To search for new evidence of the chiral p-wave superconducting domain in Sr2RuO4, we investigated the unconventional local transport characteristics of a microfabricated Sr2RuO4-Ru eutectic junction. We found that the anomalous hysteresis in voltage -current characteristics [as reported in H. Kambara et al.: Phys. Rev. Lett. 101 (2008) 267003.] is strongly affected by dc currents, but not by magnetic fields. This suggests that dc current acts as a driving force to move chiral p-wave domain walls; a domain wall trapped at a pinning potential is forced to shift to the next stable position, thereby forming a larger critical current path and resulting in the anomalous hysteresis.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا