ترغب بنشر مسار تعليمي؟ اضغط هنا

UVES and X-Shooter spectroscopy of the emission line AM CVn systems GP Com and V396 Hya

94   0   0.0 ( 0 )
 نشر من قبل Thomas Kupfer TK
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English
 تأليف T. Kupfer




اسأل ChatGPT حول البحث

We present time-resolved spectroscopy of the AM CVn-type binaries GP Com and V396 Hya obtained with VLT/X-Shooter and VLT/UVES. We fully resolve the narrow central components of the dominant helium lines and determine radial velocity semi-amplitudes of $K_{rm spike} = 11.7pm0.3$ km s$^{-1}$ for GP Com and $K_{rm spike} = 5.8pm0.3$ km s$^{-1}$ for V396 Hya. The mean velocities of the narrow central components show variations from line to line. Compared to calculated line profiles that include Stark broadening we are able to explain the displacements, and the appearance of forbidden helium lines, by additional Stark broadening of emission in a helium plasma with an electron density $n_esimeq 5times 10^{15}$ cm$^{-3}$. More than $30$ nitrogen and more than $10$ neon lines emission lines were detected in both systems. Additionally, $20$ nitrogen absorption lines are only seen in GP Com. The radial velocity variations of these lines show the same phase and velocity amplitude as the central helium emission components. The small semi-amplitude of the central helium emission component, the consistency of phase and amplitude with the absorption components in GP Com as well as the measured Stark effect shows that the central helium emission component, the so-called central-spike, is consistent with an origin on the accreting white dwarf. We use the dynamics of the bright spot and the central spike to constrain the binary parameters for both systems and find a donor mass of $9.6$ - $42.8$ M$_{rm Jupiter}$ for GP Com and $6.1$ - $30.5$ M$_{rm Jupiter}$ for V396 Hya. We find an upper limit for the rotational velocity of the accretor of $v_{rm rot}<46$ km s$^{-1}$ for GP Com and $v_{rm rot}<59$ km s$^{-1}$ for V396 Hya which excludes a fast rotating accretor in both systems.


قيم البحث

اقرأ أيضاً

133 - Gavin Ramsay 2006
We present the results of XMM-Newton observations of two AM CVn systems - V396 Hya and SDSS J1240-01. Both systems are detected in X-rays and in the UV: neither shows coherent variability in their light curves. We compare the rms variability of the X -ray and UV power spectra of these sources with other AM CVn systems. Apart from ES Cet, AM CVn sources are not strongly variable in X-rays, while in the UV the degree of variability is related to the systems apparent brightness. The X-ray spectra of V396 Hya and SDSS J1240-01 show highly non-solar abundances, requiring enhanced nitrogen to obtain good fits. We compare the UV and X-ray luminosities for 7 AM CVn systems using recent distances. We find that the X-ray luminosity is not strongly dependent upon orbital period. However, the UV luminosity is highly correlated with orbital period with the UV luminosity decreasing with increasing orbital period. We expect that this is due to the accretion disk making an increasingly strong contribution to the UV emission at shorter periods. The implied luminosities are in remarkably good agreement with predictions.
We present broad-band mid-resolution X-Shooter/VLT spectra for four brown dwarfs of the TW Hya association. Our targets comprise substellar analogs representing the different evolutionary phases in young stellar evolution: For the two diskless brown dwarfs, TWA-26 and TWA-29, we determine the stellar parameters and we study their chromospheric emission line spectrum. For the two accreting brown dwarfs, TWA-27 and TWA-28, we estimate the mass accretion rates from empirical correlations between emission line luminosities and the accretion luminosity.
AM CVn systems are ultra-compact, helium-rich, accreting binaries with degenerate or semi-degenerate donors. We report the discovery of five new eclipsing AM CVn systems with orbital periods of 61.5, 55.5, 53.3, 37.4, and 35.4 minutes. These systems were discovered by searching for deep eclipses in the Zwicky Transient Facility (ZTF) lightcurves of white dwarfs selected using Gaia parallaxes. We obtained phase-resolved spectroscopy to confirm that all systems are AM CVn binaries, and we obtained high-speed photometry to confirm the eclipse and characterize the systems. The spectra of two long-period systems (61.5 and 53.3 minutes) show many emission and absorption lines, indicating the presence of N, O, Na, Mg, Si, and Ca, and also the K and Zn, elements which have never been detected in AM CVn systems before. By modelling the high-speed photometry, we measured the mass and radius of the donor star, potentially constraining the evolutionary channel that formed these AM CVn systems. We determined that the average mass of the accreting white dwarf is $approx0.8$$mathrm{M_{odot}}$, and that the white dwarfs in long-period systems are hotter than predicted by recently updated theoretical models. The donors have a high entropy and are a factor of $approx$ 2 more massive compared to zero-entropy donors at the same orbital period. The large donor radius is most consistent with He-star progenitors, although the observed spectral features seem to contradict this. The discovery of 5 new eclipsing AM~CVn systems is consistent with the known observed AM CVn space density and estimated ZTF recovery efficiency. Based on this estimate, we expect to find another 1--4 eclipsing AM CVn systems as ZTF continues to obtain data. This will further increase our understanding of the population, but will require high precision data to better characterize these 5 systems and any new discoveries.
476 - T. Kupfer 2013
Phase-resolved spectroscopy of four AM CVn systems obtained with the William Herschel Telescope and the Gran Telescopio de Canarias (GTC) is presented. SDSS,J120841.96+355025.2 was found to have an orbital period of 52.96$pm$0.40,min and shows the pr esence of a second bright spot in the accretion disc. The average spectrum contains strong Mg,{sc i} and Si,{sc i/ii} absorption lines most likely originating in the atmosphere of the accreting white dwarf. SDSS,J012940.05+384210.4 has an orbital period of 37.555$pm$0.003 min. The average spectrum shows the Stark broadened absorption lines of the DB white dwarf accretor. The orbital period is close to the previously reported superhump period of 37.9,min. Combined, this results in a period excess $epsilon$=0.0092$pm$0.0054 and a mass ratio $q=0.031pm$0.018. SDSS,J164228.06+193410.0 displays an orbital period of 54.20$pm$1.60,min with an alias at 56.35,min. The average spectrum also shows strong Mg,{sc i} absorption lines, similar to SDSS,J120841.96+355025.2. SDSS,J152509.57+360054.50 displays an period of 44.32$pm$0.18,min. The overall shape of the average spectrum is more indicative of shorter period systems in the 20-35 minute range. The accretor is still clearly visible in the pressure broadened absorption lines most likely indicating a hot donor star and/or a high mass accretor. Flux ratios for several helium lines were extracted from the Doppler tomograms for the disc and bright spot region, and compared with single-slab LTE models with variable electron densities and path lengths to estimate the disc and bright spot temperature. A good agreement between data and the model in three out of four systems was found for the disc region. All three systems show similar disc temperatures of $sim$10,500 K. In contrast, only weak agreement between observation and models was found for the bright spot region.
{it Kepler} satellite photometry and phase-resolved spectroscopy of the ultracompact AM CVn type binary SDSS J190817.07+394036.4 are presented. The average spectra reveal a variety of weak metal lines of different species, including silicon, sulphur and magnesium as well as many lines of nitrogen, beside the strong absorption lines of neutral helium. The phase-folded spectra and the Doppler tomograms reveal an S-wave in emission in the core of the He I 4471 AA,absorption line at a period of $P_{rm orb}=1085.7pm2.8$,sec identifying this as the orbital period of the system. The Si II, Mg II and the core of some He I lines show an S-wave in absorption with a phase offset of $170pm15^circ$ compared to the S-wave in emission. The N II, Si III and some helium lines do not show any phase variability at all. The spectroscopic orbital period is in excellent agreement with a period at $P_{rm orb}=1085.108(9)$,sec detected in the three year {it Kepler} lightcurve. A Fourier analysis of the Q6 to Q17 short cadence data obtained by {it Kepler} revealed a large number of frequencies above the noise level where the majority shows a large variability in frequency and amplitude. In an O-C analysis we measured a $vertdot{P}vertsim1.0,$x$,10^{-8},$s,s$^{-1}$ for some of the strongest variations and set a limit for the orbital period to be $vertdot{P}vert<10^{-10}$s,s$^{-1}$. The shape of the phase folded lightcurve on the orbital period indicates the motion of the bright spot. Models of the system were constructed to see whether the phases of the radial velocity curves and the lightcurve variation can be combined to a coherent picture. However, from the measured phases neither the absorption nor the emission can be explained to originate in the bright spot.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا