ترغب بنشر مسار تعليمي؟ اضغط هنا

Discovery and characterization of five new eclipsing AM CVn systems

424   0   0.0 ( 0 )
 نشر من قبل Jan van Roestel
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

AM CVn systems are ultra-compact, helium-rich, accreting binaries with degenerate or semi-degenerate donors. We report the discovery of five new eclipsing AM CVn systems with orbital periods of 61.5, 55.5, 53.3, 37.4, and 35.4 minutes. These systems were discovered by searching for deep eclipses in the Zwicky Transient Facility (ZTF) lightcurves of white dwarfs selected using Gaia parallaxes. We obtained phase-resolved spectroscopy to confirm that all systems are AM CVn binaries, and we obtained high-speed photometry to confirm the eclipse and characterize the systems. The spectra of two long-period systems (61.5 and 53.3 minutes) show many emission and absorption lines, indicating the presence of N, O, Na, Mg, Si, and Ca, and also the K and Zn, elements which have never been detected in AM CVn systems before. By modelling the high-speed photometry, we measured the mass and radius of the donor star, potentially constraining the evolutionary channel that formed these AM CVn systems. We determined that the average mass of the accreting white dwarf is $approx0.8$$mathrm{M_{odot}}$, and that the white dwarfs in long-period systems are hotter than predicted by recently updated theoretical models. The donors have a high entropy and are a factor of $approx$ 2 more massive compared to zero-entropy donors at the same orbital period. The large donor radius is most consistent with He-star progenitors, although the observed spectral features seem to contradict this. The discovery of 5 new eclipsing AM~CVn systems is consistent with the known observed AM CVn space density and estimated ZTF recovery efficiency. Based on this estimate, we expect to find another 1--4 eclipsing AM CVn systems as ZTF continues to obtain data. This will further increase our understanding of the population, but will require high precision data to better characterize these 5 systems and any new discoveries.



قيم البحث

اقرأ أيضاً

514 - T. Kupfer 2013
Phase-resolved spectroscopy of four AM CVn systems obtained with the William Herschel Telescope and the Gran Telescopio de Canarias (GTC) is presented. SDSS,J120841.96+355025.2 was found to have an orbital period of 52.96$pm$0.40,min and shows the pr esence of a second bright spot in the accretion disc. The average spectrum contains strong Mg,{sc i} and Si,{sc i/ii} absorption lines most likely originating in the atmosphere of the accreting white dwarf. SDSS,J012940.05+384210.4 has an orbital period of 37.555$pm$0.003 min. The average spectrum shows the Stark broadened absorption lines of the DB white dwarf accretor. The orbital period is close to the previously reported superhump period of 37.9,min. Combined, this results in a period excess $epsilon$=0.0092$pm$0.0054 and a mass ratio $q=0.031pm$0.018. SDSS,J164228.06+193410.0 displays an orbital period of 54.20$pm$1.60,min with an alias at 56.35,min. The average spectrum also shows strong Mg,{sc i} absorption lines, similar to SDSS,J120841.96+355025.2. SDSS,J152509.57+360054.50 displays an period of 44.32$pm$0.18,min. The overall shape of the average spectrum is more indicative of shorter period systems in the 20-35 minute range. The accretor is still clearly visible in the pressure broadened absorption lines most likely indicating a hot donor star and/or a high mass accretor. Flux ratios for several helium lines were extracted from the Doppler tomograms for the disc and bright spot region, and compared with single-slab LTE models with variable electron densities and path lengths to estimate the disc and bright spot temperature. A good agreement between data and the model in three out of four systems was found for the disc region. All three systems show similar disc temperatures of $sim$10,500 K. In contrast, only weak agreement between observation and models was found for the bright spot region.
116 - Richard A. Wade 2007
We have obtained observations of the ultraviolet spectrum of AM CVn, an ultra-short-period helium cataclysmic variable, using the Space Telescope Imaging Spectrograph (STIS) aboard the Hubble Space Telescope (HST). We obtained data in time-tag mode d uring two consecutive orbits of HST, covering 1600-3150 and 1140-1710 Angstrom, respectively. The mean spectrum is approximately flat in f-nu. The absorption profiles of the strong lines of N V, Si IV, C IV, He II, and N IV are blue-shifted and in some cases asymmetric, evidencing a wind that is partly occulted by the accretion disk. There is weak red-shifted emission from N V and He II. The profiles of these lines vary mildly with time. The light curve shows a decline of ~20% over the span of the observations. There is also flickering and a 27 s (or 54 s) dwarf nova oscillation, revealed in a power-spectrum analysis. The amplitude of this oscillation is larger at shorter wavelengths. We assemble and illustrate the spectral energy distribution (s.e.d.) of AM CVn from the ultraviolet to the near-infrared. Modeling the accretion phenomenon in this binary system can in principle lead to a robust estimate of the mass accretion rate on to the central white dwarf, which is of great interest in characterizing the evolutionary history of the binary system. Inferences about the mass accretion rate depend strongly on the local radiative properties of the disk, as we illustrate. Uncertainty in the distance of AM CVn and other parameters of the binary system presently limit the ability to confidently infer the mass accretion rate.
We consider initial stage of the evolution of AM CVn type stars with white dwarf donors, which is accompanied by thermonuclear explosions in the layer of accreted He. It is shown that the accretion never results in detonation of He and accretors in A M CVn stars finish their evolution as massive WDs. We found, for the first time, that in the outbursts the synthesis of n-rich isotopes, initiated by the ${mathrm{^{22}{Ne}(alpha,n)^{25}Mg}}$ reaction becomes possible.
AM CVn binaries are hydrogen deficient compact binaries with an orbital period in the 5-65 min range and are predicted to be strong sources of persistent gravitational wave radiation. Using Gaia Data Release 2, we present the parallaxes and proper mo tions of 41 out of the 56 known systems. Compared to the parallax determined using the HST Fine Guidance Sensor we find that the archetype star, AM CVn, is significantly closer than previously thought. This resolves the high luminosity and mass accretion rate which models had difficulty in explaining. Using Pan-STARRS1 data we determine the absolute magnitude of the AM CVn stars. There is some evidence that donor stars have a higher mass and radius than expected for white dwarfs or that the donors are not white dwarfs. Using the distances to the known AM CVn stars we find strong evidence that a large population of AM CVn stars have still to be discovered. As this value sets the background to the gravitational wave signal of LISA, this is of wide interest. We determine the mass transfer rate for 15 AM CVn stars and find that the majority have a rate significantly greater than expected from standard models. This is further evidence that the donor star has a greater size than expected.
The star 1SWASP J024743.37-251549.2 was recently discovered to be a binary star in which an A-type dwarf star eclipses the remnant of a disrupted red giant star (WASP0247-25B). The remnant is in a rarely-observed state evolving to higher effective te mperatures at nearly constant luminosity prior to becoming a very low-mass white dwarf composed almost entirely of helium, i.e., it is a pre-He-WD. We have used the WASP photometric database to find 17 eclipsing binary stars with orbital periods P=0.7 to 2.2 days with similar lightcurves to 1SWASP J024743.37-251549.2. The only star in this group previously identified as a variable star is the brightest one, EL CVn, which we adopt as the prototype for this class of eclipsing binary star. The characteristic lightcurves of EL CVn-type stars show a total eclipse by an A-type dwarf star of a smaller, hotter star and a secondary eclipse of comparable depth to the primary eclipse. We have used new spectroscopic observations for 6 of these systems to confirm that the companions to the A-type stars in these binaries have very low masses (approximately 0.2 solar masses). This includes the companion to EL CVn which was not previously known to be a pre-He-WD. EL CVn-type binary star systems will enable us to study the formation of very low-mass white dwarfs in great detail, particularly in those cases where the pre-He-WD star shows non-radial pulsations similar to those recently discovered in WASP0247-25B.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا