ترغب بنشر مسار تعليمي؟ اضغط هنا

Phase resolved spectroscopy and Kepler photometry of the ultracompact AM CVn binary SDSS J190817.07+394036.4

151   0   0.0 ( 0 )
 نشر من قبل Thomas Kupfer TK
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

{it Kepler} satellite photometry and phase-resolved spectroscopy of the ultracompact AM CVn type binary SDSS J190817.07+394036.4 are presented. The average spectra reveal a variety of weak metal lines of different species, including silicon, sulphur and magnesium as well as many lines of nitrogen, beside the strong absorption lines of neutral helium. The phase-folded spectra and the Doppler tomograms reveal an S-wave in emission in the core of the He I 4471 AA,absorption line at a period of $P_{rm orb}=1085.7pm2.8$,sec identifying this as the orbital period of the system. The Si II, Mg II and the core of some He I lines show an S-wave in absorption with a phase offset of $170pm15^circ$ compared to the S-wave in emission. The N II, Si III and some helium lines do not show any phase variability at all. The spectroscopic orbital period is in excellent agreement with a period at $P_{rm orb}=1085.108(9)$,sec detected in the three year {it Kepler} lightcurve. A Fourier analysis of the Q6 to Q17 short cadence data obtained by {it Kepler} revealed a large number of frequencies above the noise level where the majority shows a large variability in frequency and amplitude. In an O-C analysis we measured a $vertdot{P}vertsim1.0,$x$,10^{-8},$s,s$^{-1}$ for some of the strongest variations and set a limit for the orbital period to be $vertdot{P}vert<10^{-10}$s,s$^{-1}$. The shape of the phase folded lightcurve on the orbital period indicates the motion of the bright spot. Models of the system were constructed to see whether the phases of the radial velocity curves and the lightcurve variation can be combined to a coherent picture. However, from the measured phases neither the absorption nor the emission can be explained to originate in the bright spot.



قيم البحث

اقرأ أيضاً

We report the discovery of a one magnitude increase in the optical brightness of the 59.63 minute orbital period AM CVn binary SDSS J113732.32+405458.3. Public $g$, $r$, and $i$ band data from the Zwicky Transient Facility (ZTF) exhibit a decline ove r a 300 day period, while a few data points from commissioning show that the peak was likely seen. Such an outburst is likely due to a change in the state of the accretion disk, making this the longest period AM CVn binary to reveal an unstable accretion disk. The object is now back to its previously observed (by SDSS and PS-1) quiescent brightness that is likely set by the accreting white dwarf. Prior observations of this object also imply that the recurrence times for such outbursts are likely more than 12 years.
We present a first and detailed study of the bright and active K0IV-III star HD 123351. The star is found to be a single-lined spectroscopic binary with a period of 147.8919+-0.0003 days and a large eccentricity of e=0.8086+-0.0001. The rms of the or bital solution is just 47 m/s, making it the most precise orbit ever obtained for an active binary system. The rotation period is constrained from long-term photometry to be 58.32+-0.01 days. It shows that HD 123351 is a very asynchronous rotator, rotating five times slower than the expected pseudo-synchronous value. Two spotted regions persisted throughout the 12 years of our observations. Four years of Halpha, CaII H&K and HeI D3 monitoring identifies the same main periodicity as the photometry but dynamic spectra also indicate that there is an intermittent dependence on the orbital period, in particular for Ca ii H&K in 2008. Line-profile
We present the discovery of SDSS J135154.46-064309.0, a short-period variable observed using 30-minute cadence photometry in K2 Campaign 6. Follow-up spectroscopy and high-speed photometry support a classification as a new member of the rare class of ultracompact accreting binaries known as AM CVn stars. The spectroscopic orbital period of $15.65 pm 0.12$,minutes makes this system the fourth-shortest period AM CVn known, and the second system of this type to be discovered by the Kepler spacecraft. The K2 data show photometric periods at $15.7306 pm 0.0003$,minutes, $16.1121 pm 0.0004$,minutes and $664.82 pm 0.06$,minutes, which we identify as the orbital period, superhump period, and disc precession period, respectively. From the superhump and orbital periods we estimate the binary mass ratio $q = M_2/M_1 = 0.111 pm 0.005$, though this method of mass ratio determination may not be well calibrated for helium-dominated binaries. This system is likely to be a bright foreground source of gravitational waves in the frequency range detectable by LISA, and may be of use as a calibration source if future studies are able to constrain the masses of its stellar components.
We consider initial stage of the evolution of AM CVn type stars with white dwarf donors, which is accompanied by thermonuclear explosions in the layer of accreted He. It is shown that the accretion never results in detonation of He and accretors in A M CVn stars finish their evolution as massive WDs. We found, for the first time, that in the outbursts the synthesis of n-rich isotopes, initiated by the ${mathrm{^{22}{Ne}(alpha,n)^{25}Mg}}$ reaction becomes possible.
We discuss results of our study on AM CVn binaries formed with donors that never ignited He before contact. For the first time, we treat the donors in these systems in the context of a full stellar structure evolution theory and find that the binarys evolution can described in terms of 3 phases: contact, adiabatic donor expansion, and late-time donor cooling. Details of the first and third phase are new results from this study and we focus on generally characterizing these two phases. Finally, we present our predictions for the donors light in these systems.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا