ﻻ يوجد ملخص باللغة العربية
A $p$-local compact group is an algebraic object modelled on the homotopy theory associated with $p$-completed classifying spaces of compact Lie groups and p-compact groups. In particular $p$-local compact groups give a unified framework in which one may study $p$-completed classifying spaces from an algebraic and homotopy theoretic point of view. Like connected compact Lie groups and p-compact groups, $p$-local compact groups admit unstable Adams operations - self equivalences that are characterised by their cohomological effect. Unstable Adams operations on $p$-local compact groups were constructed in a previous paper by F. Junod and the authors. In the current paper we study groups of unstable operations from a geometric and algebraic point of view. We give a precise description of the relationship between algebraic and geometric operations, and show that under some conditions unstable Adams operations are determined by their degree. We also examine a particularly well behaved subgroup of operations.
A p-local compact group is an algebraic object modelled on the p-local homotopy theory of classifying spaces of compact Lie groups and p-compact groups. In the study of these objects unstable Adams operations, are of fundamental importance. In this p
Let A be the classifying space of an abelian p-torsion group. We compute A-cellular approximations (in the sense of Chacholski and Farjoun) of classifying spaces of p-local compact groups, with special emphasis in the cases which arise from honest compact Lie groups.
A p-compact group is a mod p homotopy theoretical analogue of a compact Lie group. It is determined the homotopy nilpotency class of a p-compact group having the homotopy type of the $p$-completion of the direct product of spheres.
For a compact Lie group $G$ with maximal torus $T$, Pittie and Smith showed that the flag variety $G/T$ is always a stably framed boundary. We generalize this to the category of $p$-compact groups, where the geometric argument is replaced by a homoto
These are notes for a five lecture series intended to uncover large-scale phenomena in the homotopy groups of spheres using the Adams-Novikov Spectral Sequence. The lectures were given in Strasbourg, May 7-11, 2007.