ﻻ يوجد ملخص باللغة العربية
A p-local compact group is an algebraic object modelled on the p-local homotopy theory of classifying spaces of compact Lie groups and p-compact groups. In the study of these objects unstable Adams operations, are of fundamental importance. In this paper we define unstable Adams operations within the theory of p-local compact groups, and show that such operations exist under rather mild conditions. More precisely, we prove that for a given p-local compact group G and a sufficiently large positive integer $m$, there exists an injective group homomorphism from the group of p-adic units which are congruent to 1 modulo p^m to the group of unstable Adams operations on G
A $p$-local compact group is an algebraic object modelled on the homotopy theory associated with $p$-completed classifying spaces of compact Lie groups and p-compact groups. In particular $p$-local compact groups give a unified framework in which one
Let A be the classifying space of an abelian p-torsion group. We compute A-cellular approximations (in the sense of Chacholski and Farjoun) of classifying spaces of p-local compact groups, with special emphasis in the cases which arise from honest compact Lie groups.
A p-compact group is a mod p homotopy theoretical analogue of a compact Lie group. It is determined the homotopy nilpotency class of a p-compact group having the homotopy type of the $p$-completion of the direct product of spheres.
For a compact Lie group $G$ with maximal torus $T$, Pittie and Smith showed that the flag variety $G/T$ is always a stably framed boundary. We generalize this to the category of $p$-compact groups, where the geometric argument is replaced by a homoto
These are notes for a five lecture series intended to uncover large-scale phenomena in the homotopy groups of spheres using the Adams-Novikov Spectral Sequence. The lectures were given in Strasbourg, May 7-11, 2007.