ﻻ يوجد ملخص باللغة العربية
These are notes for a five lecture series intended to uncover large-scale phenomena in the homotopy groups of spheres using the Adams-Novikov Spectral Sequence. The lectures were given in Strasbourg, May 7-11, 2007.
We discuss the current state of knowledge of stable homotopy groups of spheres. We describe a new computational method that yields a streamlined computation of the first 61 stable homotopy groups, and gives new information about the stable homotopy g
In previous work of the first author and Jibladze, the $E_3$-term of the Adams spectral sequence was described as a secondary derived functor, defined via secondary chain complexes in a groupoid-enriched category. This led to computations of the $E_3
This document contains large-format Adams-Novikov charts that compute the classical 2-complete stable homotopy groups. The charts are essentially complete through the 60-stem. We believe that these are the most accurate and extensive charts of their
We show a few nontrivial extensions in the classical Adams spectral sequence. In particular, we compute that the 2-primary part of $pi_{51}$ is $mathbb{Z}/8oplusmathbb{Z}/8oplusmathbb{Z}/2$. This was the last unsolved 2-extension problem left by the
Let $S(V)$ be a complex linear sphere of a finite group $G$. %the space of unit vectors in a complex representation $V$ of a finite group $G$. Let $S(V)^{*n}$ denote the $n$-fold join of $S(V)$ with itself and let $aut_G(S(V)^*)$ denote the space of