ﻻ يوجد ملخص باللغة العربية
The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the particles. We show that the energy at small separation $h$ has a singular logarithmic dependence on $h$. We derive a general form for this energy in terms of the singular capacitance of two spheres in near contact $c(h)$, together with nonsingular geometric features of the cluster. Using this form, we determine the energies of various clusters, finding that more compact clusters are more stable. These energies are proposed to be significant for metal-semiconductor binary nanoparticle lattices found experimentally. We sketch how these effects should dictate the relative abundances of metal nanoparticle clusters in nonpolar solvents.
The binding of clusters of metal nanoparticles is partly electrostatic. We address difficulties in calculating the electrostatic energy when high charging energies limit the total charge to a single quantum, entailing unequal potentials on the partic
We report on the electrostatic complexation between polyelectrolyte-neutral copolymers and oppositely charged 6 nm-crystalline nanoparticles. For two different dispersions of oxide nanoparticles, the electrostatic complexation gives rise to the forma
Aggregation of nanoparticles of given size $R$ induced by addition of a polymer strongly depends on its degree of rigidity. This is shown here on a large variety of silica nanoparticle self-assemblies obtained by electrostatic complexation with caref
Electrostatic reaction inhibition in heterogeneous catalysis emerges if charged reactants and products are adsorbed on the catalyst and thus repel the approaching reactants. In this work, we study the effects of electrostatic inhibition on the reacti
The induced surface charges appear to diverge when dielectric particles form close contacts. Resolving this singularity numerically is prohibitively expensive because high spatial resolution is needed. We show that the strength of this singularity is