ترغب بنشر مسار تعليمي؟ اضغط هنا

Exact polarization energy for clusters of contacting dielectrics

53   0   0.0 ( 0 )
 نشر من قبل Jian Qin
 تاريخ النشر 2021
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The induced surface charges appear to diverge when dielectric particles form close contacts. Resolving this singularity numerically is prohibitively expensive because high spatial resolution is needed. We show that the strength of this singularity is logarithmic in both inter-particle separation and dielectric permittivity. A regularization scheme is proposed to isolate this singularity, and to calculate the exact cohesive energy for clusters of contacting dielectric particles. The results indicate that polarization energy stabilizes clusters of open configurations when permittivity is high, in agreement with the behavior of conducting particles, but stabilizes the compact configurations when permittivity is low.



قيم البحث

اقرأ أيضاً

The position-dependent exact-exchange energy per particle $varepsilon_x(z)$ (defined as the interaction between a given electron at $z$ and its exact-exchange hole) at metal surfaces is investigated, by using either jellium slabs or the semi-infinite (SI) jellium model. For jellium slabs, we prove analytically and numerically that in the vacuum region far away from the surface $varepsilon_{x}^{text{Slab}}(z to infty) to - e^{2}/2z$, {it independent} of the bulk electron density, which is exactly half the corresponding exact-exchange potential $V_{x}(z to infty) to - e^2/z$ [Phys. Rev. Lett. {bf 97}, 026802 (2006)] of density-functional theory, as occurs in the case of finite systems. The fitting of $varepsilon_{x}^{text{Slab}}(z)$ to a physically motivated image-like expression is feasible, but the resulting location of the image plane shows strong finite-size oscillations every time a slab discrete energy level becomes occupied. For a semi-infinite jellium, the asymptotic behavior of $varepsilon_{x}^{text{SI}}(z)$ is somehow different. As in the case of jellium slabs $varepsilon_{x}^{text{SI}}(z to infty)$ has an image-like behavior of the form $propto - e^2/z$, but now with a density-dependent coefficient that in general differs from the slab universal coefficient 1/2. Our numerical estimates for this coefficient agree with two previous analytical estimates for the same. For an arbitrary finite thickness of a jellium slab, we find that the asymptotic limits of $varepsilon_{x}^{text{Slab}}(z)$ and $varepsilon_{x}^{text{SI}}(z)$ only coincide in the low-density limit ($r_s to infty$), where the density-dependent coefficient of the semi-infinite jellium approaches the slab {it universal} coefficient 1/2.
The influence of quadrupolar interactions on the structure of small clusters is investigated by adding a point quadrupole of variable strength to the Lennard-Jones potential. Competition arises between sheet-like arrangements of the particles, favour ed by the quadrupoles, and compact structures, favoured by the isotropic Lennard-Jones attraction. Putative global potential energy minima are obtained for clusters of up to 25 particles using the basin-hopping algorithm. A number of structural motifs and growth sequences emerge, including star-like structures, tubes, shells and sheets. The results are discussed in the context of colloidal self-assembly.
We propose a method for the simulation of particle fragmentation based on the calculation of the energy landscape inside the particle. The landscape of strain energy is calculated in terms of internal stress using the principles of damage and fractur e mechanics. Numerical calculation of the landscape s ridges is used to determine the breakage criterion as well as the shape of the postbreakage fragments. This method provides a physical-based understanding of the breakage effect in granular material.
Vacuum ultraviolet (VUV) transmission spectra show a clear polarization effect in pi electronic transition in spin coated atactic polystyrene (aPS) films of thickness below 4Rg, where Rg (~20.4nm) is the radius of gyration of the polymer. This transi tion associated with pendant benzene rings in polystyrene. The polarization effect clearly indicates pendant benzene ring alignment on a macroscopic scale. Study of core electron (1s) transition through near edge x-ray absorption fine structure (NEXAFS) spectroscopy confirms the ordering and shows that the rings are oriented towards out-of-plane direction with a tilt angle ~63 degree with the sample plane, which is consistent with the observed in-plane (sample surface) VUV polarization. These results indicate the transition of a common polymer, like polystyrene, inherently disordered in the bulk, to an orientationally ordered phase under a certain degree of confinement.
We report magnetotransport measurements of a gated InSb quantum well (QW) with high quality Al2O3 dielectrics (40 nm thick) grown by atomic layer deposition. The magnetoresistance data demonstrate a parallel conduction channel in the sample at zero g ate voltage (Vg). A good interface between Al2O3 and the top InSb layer ensures that the parallel channel is depleted at negative Vg and the density of two-dimensional electrons in the QW is tuned by Vg with a large ratio of 6.5x1014 m-2V-1 but saturates at large negative Vg. These findings are closely related to layer structures of the QW as suggested by self-consistent Schrodinger-Poisson simulation and two-carrier model.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا