ﻻ يوجد ملخص باللغة العربية
We describe a micromachining process to allow the coupling of an array of single-mode telecommunication fibers to individual superconducting nanowire single photon detectors (SNSPDs). As proof of principle, we show the integration of four detectors on the same silicon chip, including two standard single-section nanowire detectors and two superconducting nanowire avalanche photodetectors (SNAPs) with modified series structure without external inductor, and their performances are compared. The SNAP shows saturated system detection efficiency of 16% while the dark count rate is less than 20 Hz, without the use of photon-recycling reflectors. The SNAP also demonstrates doubled signal-to-noise ratio, reduced reset time (~ 4.9 ns decay time) and improved timing jitter (62 ps FWHM) compared to standard SNSPDs.
We investigated the reset time of superconducting nanowire avalanche photodetectors (SNAPs) based on 30 nm wide nanowires. We studied the dependence of the reset time of SNAPs on the device inductance and discovered that SNAPs can provide a speed-up
We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching curr
Time- and number-resolved photon detection is crucial for photonic quantum information processing. Existing photon-number-resolving (PNR) detectors usually have limited timing and dark-count performance or require complex fabrication and operation. H
We present a 1024-element imaging array of superconducting nanowire single photon detectors (SNSPDs) using a 32x32 row-column multiplexing architecture. Large arrays are desirable for applications such as imaging, spectroscopy, or particle detection.
We present a time-over-threshold readout technique to count the number of activated pixels from an array of superconducting nanowire single photon detectors (SNSPDs). This technique maintains the intrinsic timing jitter of the individual pixels, plac