ترغب بنشر مسار تعليمي؟ اضغط هنا

Afterpulsing and Instability in Superconducting Nanowire Avalanche Photodetectors

137   0   0.0 ( 0 )
 نشر من قبل Francesco Marsili
 تاريخ النشر 2012
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the reset time of superconducting nanowire avalanche photodetectors (SNAPs) based on 30 nm wide nanowires. We studied the dependence of the reset time of SNAPs on the device inductance and discovered that SNAPs can provide a speed-up relative to SNSPDs with the same area, but with some limitations: (1) reducing the series inductance of SNAPs (necessary for the avalanche formation) could result in the detectors operating in an unstable regime; (2) a trade-off exists between maximizing the bias current margin and minimizing the reset time of SNAPs; and (3) reducing the reset time of SNAPs below ~ 1 ns resulted in afterpulsing.

قيم البحث

اقرأ أيضاً

We investigated the timing jitter of superconducting nanowire avalanche photodetectors (SNAPs, also referred to as cascade switching superconducting single photon detectors) based on 30-nm-wide nanowires. At bias currents (IB) near the switching curr ent, SNAPs showed sub 35 ps FWHM Gaussian jitter similar to standard 100 nm wide superconducting nanowire single-photon detectors. At lower values of IB, the instrument response function (IRF) of the detectors became wider, more asymmetric, and shifted to longer time delays. We could reproduce the experimentally observed IRF time-shift in simulations based on an electrothermal model, and explain the effect with a simple physical picture.
We describe a micromachining process to allow the coupling of an array of single-mode telecommunication fibers to individual superconducting nanowire single photon detectors (SNSPDs). As proof of principle, we show the integration of four detectors o n the same silicon chip, including two standard single-section nanowire detectors and two superconducting nanowire avalanche photodetectors (SNAPs) with modified series structure without external inductor, and their performances are compared. The SNAP shows saturated system detection efficiency of 16% while the dark count rate is less than 20 Hz, without the use of photon-recycling reflectors. The SNAP also demonstrates doubled signal-to-noise ratio, reduced reset time (~ 4.9 ns decay time) and improved timing jitter (62 ps FWHM) compared to standard SNSPDs.
Single-photon avalanche photodiode(SPAD) has been widely used in researching of quantum optics. Afterpulsing effect, which is an intrinsic character of SPAD, affects the system performance in most of the experiments and needs to be carefully handled. For a long time, afterpulsing has been presumed to be determined by the pre-ignition avalanche. We studied the afterpulsing effect of a commercial InGaAs/InP SPAD (APD: Princeton Lightwave PGA-300) and demonstrated that its afterpulsing is non-Markov, which has memory effect of the avalanching history. Theoretical analysis and the experimental results clearly indicate that the embodiment of this memory effect is the afterpulsing probability, which increases as the number of ignition-avalanche pulses increase. The conclusion makes the principle of afterpulsing effect clearer and is instructive to the manufacturing processes and afterpulsing evaluation of high-count-rate SPADs. It can also be regarded as an fundamental premise to handle the afterpulsing signals in many applications, such as quantum communication and quantum random number generator.
We developed an electro thermal model of NbN superconducting nanowire avalanche photodetectors (SNAPs) on sapphire substrates. SNAPs are single photon detectors consisting of the parallel connection of N superconducting nanowires. We extrapolated the physical constants of the model from experimental data and we simulated the time evolution of the device resistance, temperature and current by solving two coupled electrical and thermal differential equations describing the nanowires. The predictions of the model were in good quantitative agreement with the experimental results.
107 - Adam Para 2015
Novel generation of silicon-based photodetectors are attractive alternatives to the traditional phototubes. They offer significant advantages but they present new challenges too. Presence of afterpulses may affect many characteristics of the photodet ectors. Simple statistical model of afterpulsing is used to evaluate the contribution to the observed dark count rates, to examine the contribution to the pulse height resolution and to demonstrate the modification of the observed timing properties of the SiPMs.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا