ترغب بنشر مسار تعليمي؟ اضغط هنا

Observations and modelling of CO and [CI] in disks. First detections of [CI] and constraints on the carbon abundance

75   0   0.0 ( 0 )
 نشر من قبل Mihkel Kama
 تاريخ النشر 2016
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The gas-solid budget of carbon in protoplanetary disks is related to the composition of the cores and atmospheres of the planets forming in them. The key gas-phase carbon carriers CO, C$^{0}$ and C$^{+}$ can now be observed in disks. The gas-phase carbon abundance in disks has not yet been well characterized, we aim to obtain new constraints on the [C]/[H] ratio in a sample of disks, and to get an overview of the strength of [CI] and warm CO emission. We carried out a survey of the CO$,6$--$5$ and [CI]$,1$--$0$ and $2$--$1$ lines towards $37$ disks with APEX, and supplemented it with [CII] data from the literature. The data are interpreted using a grid of models produced with the DALI code. We also investigate how well the gas-phase carbon abundance can be determined in light of parameter uncertainties. The CO$,6$--$5$ line is detected in $13$ out of $33$ sources, the [CI]$,1$--$0$ in $6$ out of $12$, and the [CI]$,2$--$1$ in $1$ out of $33$. With deep integrations, the first unambiguous detections of [CI]~$1$--$0$ in disks are obtained, in TW~Hya and HD~100546. Gas-phase carbon abundance reductions of a factor $5$--$10$ or more can be identified robustly based on CO and [CI] detections. The atomic carbon detection in TW~Hya confirms a factor $100$ reduction of [C]/[H]$_{rm gas}$ in that disk, while the data are consistent with an ISM-like carbon abundance for HD~100546. In addition, BP~Tau, T~Cha, HD~139614, HD~141569, and HD~100453 are either carbon-depleted or gas-poor disks. The low [CI]~$2$--$1$ detection rates in the survey mostly reflect insufficient sensitivity to detect T~Tauri disks. The Herbig~Ae/Be disks with CO and [CII] upper limits below the models are debris disk like systems. A roughly order of magnitude increase in sensitivity compared to our survey is required to obtain useful constraints on the gas-phase [C]/[H] ratio in most of the targeted systems.

قيم البحث

اقرأ أيضاً

Context: How do molecular clouds form out of the atomic phase? And what are the relative fractions of carbon in the ionized, atomic and molecular phase? These are questions at the heart of cloud and star formation. Methods: Using multiple observatori es from Herschel and SOFIA to APEX and the IRAM 30m telescope, we mapped the ionized, atomic and molecular carbon ([CII]@1900GHz, [CI]@492GHz and C18O(2-1)@220GHz) at high spatial resolution (12-25) in four young massive infrared dark clouds (IRDCs). Results: The three carbon phases were successfully mapped in all four regions, only in one source the [CII] line remained a non-detection. Both the molecular and atomic phases trace the dense structures well, with [CI] also tracing material at lower column densities. [CII] exhibits diverse morphologies in our sample, from compact to diffuse structures probing the cloud environment. In at least two out of the four regions, we find kinematic signatures strongly indicating that the dense gas filaments have formed out of a dynamically active and turbulent atomic/molecular cloud, potentially from converging gas flows. The atomic-to-molecular carbon gas mass ratios are low between 7% and 12% with the lowest values found toward the most quiescent region. In the three regions where [CII] is detected, its mass is always higher by a factor of a few than that of the atomic carbon. The ionized carbon emission depends as well on the radiation field, however, we also find strong [CII] emission in a region without significant external sources, indicating that other processes, e.g., energetic gas flows can contribute to the [CII] excitation as well.
We present first results of neutral carbon ([CI], 3P1 - 3P0 at 492 GHz) and carbon monoxide (13CO, J = 1 - 0) mapping in the Vela Molecular Ridge cloud C (VMR-C) and G333 giant molecular cloud complexes with the NANTEN2 and Mopra telescopes. For the four regions mapped in this work, we find that [CI] has very similar spectral emission profiles to 13CO, with comparable line widths. We find that [CI] has opacity of 0.1 - 1.3 across the mapped region while the [CI]/13CO peak brightness temperature ratio is between 0.2 to 0.8. The [CI] column density is an order of magnitude lower than that of 13CO. The H2 column density derived from [CI] is comparable to values obtained from 12CO. Our maps show CI is preferentially detected in gas with low temperatures (below 20 K), which possibly explains the comparable H2 column density calculated from both tracers (both CI and 12CO underestimate column density), as a significant amount of the CI in the warmer gas is likely in the higher energy state transition ([CI], 3P2 - 3P1 at 810 GHz), and thus it is likely that observations of both the above [CI] transitions are needed in order to recover the total H2 column density.
52 - C. Kramer 2004
We used the KOSMA 3m telescope to map the core 7x5 of the Galactic massive star forming region W3Main in the two fine structure lines of atomic carbon and four mid-J transitions of CO and 13CO. The maps are centered on the luminous infrared source IR S5 for which we obtained ISO/LWS data comprising four high-J CO transitions, CII, and OI at 63 and 145 micron. In combination with a KAO map of integrated line intensities of CII (Howe et al. 1991), this data set allows to study the physical structure of the molecular cloud interface regions where the occurence of carbon is believed to change from C+ to C0, and to CO. The molecular gas in W3Main is warmed by the far ultraviolet (FUV) field created by more than a dozen OB stars. Detailed modelling shows that most of the observed line intensity ratios and absolute intensities are consistent with a clumpy photon dominated region (PDR) of a few hundred unresolved clumps per 0.84pc beam, filling between 3 and 9% of the volume, with a typical clump radius of 0.025pc (2.2), and typical mass of 0.44Msun. The high-excitation lines of CO stem from a 100-200K layer, as also the CI lines. The bulk of the gas mass is however at lower temperatures.
This paper exploits spectropolarimetric data of the classical T Tauri star CI Tau collected with ESPaDOnS at the Canada-France-Hawaii Telescope, with the aims of detecting and characterizing the large-scale magnetic field that the star hosts, and of investigating how the star interacts with the inner regions of its accretion disc through this field. Our data unambiguously show that CI Tau has a rotation period of 9.0d, and that it hosts a strong, mainly poloidal large-scale field. Accretion at the surface of the star concentrates within a bright high-latitude chromospheric region that spatially overlaps with a large dark photospheric spot, in which the radial magnetic field reaches -3.7kG. With a polar strength of -1.7kG, the dipole component of the large-scale field is able to evacuate the central regions of the disc up to about 50% of the co-rotation radius (at which the Keplerian orbital period equals the stellar rotation period) throughout our observations, during which the average accretion rate was found to be unusually high. We speculate that the magnetic field of CI Tau is strong enough to sustain most of the time a magnetospheric gap extending to at least 70% of the co-rotation radius, which would explain why the rotation period of CI Tau is as long as 9d. Our results also imply that the 9d radial velocity (RV) modulation that CI Tau exhibits is attributable to stellar activity, and thus that the existence of the candidate close-in massive planet CI Tau b to which these RV fluctuations were first attributed needs to be reassessed with new evidence.
We present resolved [CI] line intensities of 18 nearby galaxies observed with the SPIRE FTS spectrometer on the Herschel Space Observatory. We use these data along with resolved CO line intensities from $J_mathrm{up} = 1$ to 7 to interpret what phase of the interstellar medium the [CI] lines trace within typical local galaxies. A tight, linear relation is found between the intensities of the CO(4-3) and [CI](2-1) lines; we hypothesize this is due to the similar upper level temperature of these two lines. We modeled the [CI] and CO line emission using large velocity gradient models combined with an empirical template. According to this modeling, the [CI](1-0) line is clearly dominated by the low-excitation component. We determine [CI] to molecular mass conversion factors for both the [CI](1-0) and [CI](2-1) lines, with mean values of $alpha_{mathrm{[CI](1-0)}} = 7.3$ M$_{mathrm{sun}}$ K$^{-1}$ km$^{-1}$ s pc$^{-2}$ and $alpha_{mathrm{[CI](2-1)}} = 34 $ M$_{mathrm{sun}}$ K$^{-1}$ km$^{-1}$ s pc$^{-2}$ with logarithmic root-mean-square spreads of 0.20 and 0.32 dex, respectively. The similar spread of $alpha_{mathrm{[CI](1-0)}}$ to $alpha_{mathrm{CO}}$ (derived using the CO(2-1) line) suggests that [CI](1-0) may be just as good a tracer of cold molecular gas as CO(2-1) in galaxies of this type. On the other hand, the wider spread of $alpha_{mathrm{[CI](2-1)}}$ and the tight relation found between [CI](2-1) and CO(4-3) suggest that much of the [CI](2-1) emission may originate in warmer molecular gas.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا