ترغب بنشر مسار تعليمي؟ اضغط هنا

Emission of CO, CI, and CII in W3Main

53   0   0.0 ( 0 )
 نشر من قبل Carsten Kramer
 تاريخ النشر 2004
  مجال البحث فيزياء
والبحث باللغة English
 تأليف C. Kramer




اسأل ChatGPT حول البحث

We used the KOSMA 3m telescope to map the core 7x5 of the Galactic massive star forming region W3Main in the two fine structure lines of atomic carbon and four mid-J transitions of CO and 13CO. The maps are centered on the luminous infrared source IRS5 for which we obtained ISO/LWS data comprising four high-J CO transitions, CII, and OI at 63 and 145 micron. In combination with a KAO map of integrated line intensities of CII (Howe et al. 1991), this data set allows to study the physical structure of the molecular cloud interface regions where the occurence of carbon is believed to change from C+ to C0, and to CO. The molecular gas in W3Main is warmed by the far ultraviolet (FUV) field created by more than a dozen OB stars. Detailed modelling shows that most of the observed line intensity ratios and absolute intensities are consistent with a clumpy photon dominated region (PDR) of a few hundred unresolved clumps per 0.84pc beam, filling between 3 and 9% of the volume, with a typical clump radius of 0.025pc (2.2), and typical mass of 0.44Msun. The high-excitation lines of CO stem from a 100-200K layer, as also the CI lines. The bulk of the gas mass is however at lower temperatures.

قيم البحث

اقرأ أيضاً

64 - C. Kramer 2003
We have used the KOSMA 3m telescope to map the core 7x5 of the Galactic massive star forming region W3Main in the two fine structure lines of atomic carbon and four mid-J transitions of CO and 13CO. In combination with a map of singly ionized carbon (Howe et al. 1991), and FIR fine structure line data observed by ISO/LWS at the center position, these data sets allow to study in detail the physical structure of the photon dominated cloud interface regions (PDRs) where the occurance of carbon changes from CII to CI, and to CO.
Sub-millimeter emission lines produced by the interstellar medium (ISM) are strong tracers of star formation and are some of the main targets of line intensity mapping (LIM) surveys. In this work we present an empirical multi-line emission model that simultaneously covers the mean, scatter, and correlations of [CII], CO J=1-0 to J=5-4, and [CI] lines in redshift range $1leq zleq9$. We assume the galaxy ISM line emission luminosity versus halo mass relations can be described by double power laws with redshift-dependent log normal scatter. The model parameters are then derived by fitting to the state of the art semi-analytic simulation results that have successfully reproduced multiple sub-millimeter line observations at $0leq zlesssim6$. We cross check the line emission statistics predicted by the semi-analytic simulation and our empirical model, finding that at $zgeq1$ our model reproduces the simulated line intensities with fractional error less than about 10%. The fractional difference is less than 25% for the power spectra. Grounded on physically-motivated and self-consistent galaxy simulations, this computationally efficient model will be helpful in forecasting ISM emission line statistics for upcoming LIM surveys.
Context: How do molecular clouds form out of the atomic phase? And what are the relative fractions of carbon in the ionized, atomic and molecular phase? These are questions at the heart of cloud and star formation. Methods: Using multiple observatori es from Herschel and SOFIA to APEX and the IRAM 30m telescope, we mapped the ionized, atomic and molecular carbon ([CII]@1900GHz, [CI]@492GHz and C18O(2-1)@220GHz) at high spatial resolution (12-25) in four young massive infrared dark clouds (IRDCs). Results: The three carbon phases were successfully mapped in all four regions, only in one source the [CII] line remained a non-detection. Both the molecular and atomic phases trace the dense structures well, with [CI] also tracing material at lower column densities. [CII] exhibits diverse morphologies in our sample, from compact to diffuse structures probing the cloud environment. In at least two out of the four regions, we find kinematic signatures strongly indicating that the dense gas filaments have formed out of a dynamically active and turbulent atomic/molecular cloud, potentially from converging gas flows. The atomic-to-molecular carbon gas mass ratios are low between 7% and 12% with the lowest values found toward the most quiescent region. In the three regions where [CII] is detected, its mass is always higher by a factor of a few than that of the atomic carbon. The ionized carbon emission depends as well on the radiation field, however, we also find strong [CII] emission in a region without significant external sources, indicating that other processes, e.g., energetic gas flows can contribute to the [CII] excitation as well.
The aim of our study is to investigate the physical properties of the star-forming interstellar medium (ISM) in the Large Magellanic Cloud (LMC) by separating the origin of the emission lines spatially and spectrally. Following Okada et al. (2015, Pa per I), we investigate different phases of the ISM traced by carbon-bearing species in four star-forming regions in the LMC, and model the physical properties using the KOSMA-tau PDR model. We mapped 3--13 arcmin$^2$ areas in 30 Dor, N158, N160 and N159 along the molecular ridge of the LMC in [CII]158um with GREAT on board SOFIA, and in CO(2-1) to (6-5), $^{13}$CO(2-1) and (3-2), [CI]3P1-3P0 and 3P2-3P1 with APEX. In all four star-forming regions, the line profiles of CO, $^{13}$CO, and [CI] emission are similar, whereas [CII] typically shows wider line profiles or an additional velocity component. For selected positions in N159 and 30 Dor, we observed the velocity-resolved [OI] 145um and 63um lines for the first time with upGREAT. At some positions, the [OI] line profiles match those of CO, at other positions they are more similar to the [CII] profiles. We interpret the different line profiles of CO, [CII] and [OI] as contributions from spatially separated clouds and/or clouds in different physical phases, which give different line ratios depending on their physical properties. We model the emission from the CO, [CI], [CII], and [OI] lines and the far-infrared continuum emission using the latest KOSMA-tau PDR model, which treats the dust-related physics consistently and computes the dust continuum SED together with the line emission of the chemical species. We find that the line and continuum emissions are not well-reproduced by a single clump ensemble. Toward the CO peak at N159~W, we propose a scenario that the CO, [CII], and [OI] 63um emission are weaker than expected because of mutual shielding among clumps. (abridged for arXiv)
We present and analyze deep Herschel/HIFI observations of the [CII] 158um, [CI] 609um, and [CI] 370um lines towards 54 lines-of-sight (LOS) in the Large and Small Magellanic clouds. These observations are used to determine the physical conditions of the line--emitting gas, which we use to study the transition from atomic to molecular gas and from C^+ to C^0 to CO in their low metallicity environments. We trace gas with molecular fractions in the range 0.1<f(H2)<1, between those in the diffuse H2 gas detected by UV absorption (f(H2)<0.2) and well shielded regions in which hydrogen is essentially completely molecular. The C^0 and CO column densities are only measurable in regions with molecular fractions f(H2)>0.45 in both the LMC and SMC. Ionized carbon is the dominant gas-phase form of this element that is associated with molecular gas, with C^0 and CO representing a small fraction, implying that most (89% in the LMC and 77% in the SMC) of the molecular gas in our sample is CO-dark H2. The mean X_CO conversion factors in our LMC and SMC sample are larger than the value typically found in the Milky Way. When applying a correction based on the filling factor of the CO emission, we find that the values of X_CO in the LMC and SMC are closer to that in the Milky Way. The observed [CII] intensity in our sample represents about 1% of the total far-infrared intensity from the LOSs observed in both Magellanic Clouds.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا