ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge-dependent anisotropic flow in Cu+Au collisions

65   0   0.0 ( 0 )
 نشر من قبل Takafumi Niida
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English
 تأليف Takafumi Niida




اسأل ChatGPT حول البحث

We present the first measurements of charge-dependent directed flow in Cu+Au collisions at t $sqrt{s_{NN}}$ = 200 GeV. The directed flow has been measured as functions of the transverse momentum and pseudorapidity with the STAR detector. The results show a small but finite difference between positively and negatively charged particles. The difference is qualitatively explained by the patron-hadron-string-dynamics (PHSD) model including the effect of the electric field, but much smaller than the model calculation, which indicates only a small fraction of all final quarks are created within the lifetime of the initial electric field. Higher-order azimuthal anisotropic flow is also presented up to the fourth-order for unidentified charged particles and up to the third-order for identified charged particles ({pi}, K, and p). For unidentified particles, the results are reasonably described by the event-by-event viscous hydrodynamic model with {eta}/s=0.08-0.16. The trends observed for identified particles in Cu+Au collisions are similar to those observed in symmetric (Au+Au) collisions.



قيم البحث

اقرأ أيضاً

We present the first measurement of charge-dependent directed flow in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics (PHSD) model, which suggests that most of the electric charges, i.e. quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm/$c$.
The Chiral Magnetic Wave (CMW) [1] predicts a dependence of the positive and negative particle elliptic flow on the event charge asymmetry. Such a dependence has been observed by the STAR Collaboration [2]. However, it is rather difficult to interpre t the results of this measurement, as well as to perform cross-experiment comparisons, due to the dependence of the observable on experimental inefficiencies and the kinematic acceptance used to determine the net asymmetry. We propose another observable that is free from these deficiencies. It also provides possibilities for differential measurements clarifying the interpretation of the results. We use this new observable to study the effect of the local charge conservation that can mimic the effect of the CMW in charge dependent flow measurements.
We report new STAR measurements of mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$ particles in Cu+Cu collisions at sNN{200}, and mid-rapidity yields for the $Lambda$, $bar{Lamb da}$, $K^{0}_{S}$ particles in Au+Au at sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.
Directed flow of antiprotons is studied in Au+Au collisions at a beam momentum of 11.5A GeV/c. It is shown that antiproton directed flow is anti-correlated to proton flow. The measured transverse momentum dependence of the antiproton flow is compared with predictions of the RQMD event generator.
The directed flow of identified hadrons is studied within the parton-hadron-string-dynamics (PHSD) approach for the asymmetric system Cu+Au in non-central collisions at $sqrt{s_{NN}}$ = 200 GeV. It is emphasized that due to the difference in the numb er of protons of the colliding nuclei an electric field emerges which is directed from the heavy to the light nucleus. This strong electric field is only present for about 0.25 fm/c at $sqrt{s_{NN}}$ = 200 GeV and leads to a splitting of the directed flow $v_1$ for particles with the same mass but opposite electric charges in case of an early presence of charged quarks and antiquarks. The microscopic calculations of the directed flow for $pi^pm, K^pm, p$ and $bar{p}$ are carried out in the PHSD by taking into account the electromagnetic field induced by the spectators as well as its influence on the hadronic and partonic quasiparticle trajectories. It is shown that the splitting of the directed flow as a function of pseudorapidity $eta$ and in particular as a function of the transverse momentum $p_t$ provides a direct access to the electromagnetic response of the very early (nonequilibrium) phase of relativistic heavy-ion collisions and allows to shed light on the presence (and number) of electric charges in this phase.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا