ترغب بنشر مسار تعليمي؟ اضغط هنا

Charge-dependent directed flow in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV

97   0   0.0 ( 0 )
 نشر من قبل Takafumi Niida
 تاريخ النشر 2016
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present the first measurement of charge-dependent directed flow in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics (PHSD) model, which suggests that most of the electric charges, i.e. quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm/$c$.

قيم البحث

اقرأ أيضاً

Measurements of anisotropic flow Fourier coefficients ($v_n$) for inclusive charged particles and identified hadrons $pi^{pm}$, $K^{pm}$, $p$, and $bar{p}$ produced at midrapidity in Cu+Au collisions at $sqrt{s_{_{NN}}}=200$ GeV are presented. The da ta were collected in 2012 by the PHENIX experiment at the Relativistic Heavy Ion Collider (RHIC). The particle azimuthal distributions with respect to different order symmetry planes $Psi_n$, for $n$~=~1, 2, and 3 are studied as a function of transverse momentum $p_T$ over a broad range of collisions centralities. Mass ordering, as expected from hydrodynamic flow, is observed for all three harmonics. The charged-particle results are compared to hydrodynamical and transport model calculations. We also compare these Cu$+$Au results with those in Cu$+$Cu and Au$+$Au collisions at the same $sqrt{s_{_{NN}}}$, and find that the $v_2$ and $v_3$, as a function of transverse momentum, follow a common scaling with $1/(varepsilon_n N_{rm part}^{1/3})$.
The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|eta|<1$. The directed flow in Cu+A u collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $langle p_xrangle$, in Cu+Au collision also exhibits approximately linear dependence on $eta$ with the intercept at about $etaapprox-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the tilted source and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $langle p_xrangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $nge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.
We report new STAR measurements of mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$ particles in Cu+Cu collisions at sNN{200}, and mid-rapidity yields for the $Lambda$, $bar{Lamb da}$, $K^{0}_{S}$ particles in Au+Au at sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.
We present measurements of $e^+e^-$ production at midrapidity in Au$+$Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The invariant yield is studied within the PHENIX detector acceptance over a wide range of mass ($m_{ee} <$ 5 GeV/$c^2$) and pair trans verse momentum ($p_T$ $<$ 5 GeV/$c$), for minimum bias and for five centrality classes. The ee yield is compared to the expectations from known sources. In the low-mass region ($m_{ee}=0.30$--0.76 GeV/$c^2$) there is an enhancement that increases with centrality and is distributed over the entire pair pt range measured. It is significantly smaller than previously reported by the PHENIX experiment and amounts to $2.3pm0.4({rm stat})pm0.4({rm syst})pm0.2^{rm model}$ or to $1.7pm0.3({rm stat})pm0.3({rm syst})pm0.2^{rm model}$ for minimum bias collisions when the open-heavy-flavor contribution is calculated with {sc pythia} or {sc mc@nlo}, respectively. The inclusive mass and $p_T$ distributions as well as the centrality dependence are well reproduced by model calculations where the enhancement mainly originates from the melting of the $rho$ meson resonance as the system approaches chiral symmetry restoration. In the intermediate-mass region ($m_{ee}$ = 1.2--2.8 GeV/$c^2$), the data hint at a significant contribution in addition to the yield from the semileptonic decays of heavy-flavor mesons.
We present a systematic analysis of two-pion interferometry in Au+Au collisions at $sqrt{s_{rm{NN}}}$ = 62.4 GeV and Cu+Cu collisions at $sqrt{s_{rm{NN}}}$ = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum d ependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا