ترغب بنشر مسار تعليمي؟ اضغط هنا

Strangeness Enhancement in Cu+Cu and Au+Au Collisions at sqrt{s_{NN}} = 200 GeV

172   0   0.0 ( 0 )
 نشر من قبل Anthony Timmins R
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We report new STAR measurements of mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$, $Xi^{-}$, $bar{Xi}^{+}$, $Omega^{-}$, $bar{Omega}^{+}$ particles in Cu+Cu collisions at sNN{200}, and mid-rapidity yields for the $Lambda$, $bar{Lambda}$, $K^{0}_{S}$ particles in Au+Au at sNN{200}. We show that at a given number of participating nucleons, the production of strange hadrons is higher in Cu+Cu collisions than in Au+Au collisions at the same center-of-mass energy. We find that aspects of the enhancement factors for all particles can be described by a parameterization based on the fraction of participants that undergo multiple collisions.



قيم البحث

اقرأ أيضاً

The azimuthal anisotropic flow of identified and unidentified charged particles has been systematically studied in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV for harmonics $n=$ 1-4 in the pseudorapidity range $|eta|<1$. The directed flow in Cu+A u collisions is compared with the rapidity-odd and, for the first time, the rapidity-even components of charged particle directed flow in Au+Au collisions at $sqrt{s_{_{NN}}}$ = 200~GeV. The slope of the directed flow pseudorapidity dependence in Cu+Au collisions is found to be similar to that in Au+Au collisions, with the intercept shifted toward positive $eta$ values, i.e., the Cu-going direction. The mean transverse momentum projected onto the spectator plane, $langle p_xrangle$, in Cu+Au collision also exhibits approximately linear dependence on $eta$ with the intercept at about $etaapprox-0.4$, closer to the rapidity of the Cu+Au system center-of-mass. The observed dependencies find natural explanation in a picture of the directed flow originating partly due the tilted source and partly due to the rapidity dependent asymmetry in the initial density distribution. Charge-dependence of the $langle p_xrangle$ was also observed in Cu+Au collisions, indicating an effect of the initial electric field created by charge difference of the spectator protons in two colliding nuclei. The rapidity-even component of directed flow in Au+Au collisions is close to that in Pb+Pb collisions at $sqrt{s_{_{NN}}}$ = 2.76 TeV, indicating a similar magnitude of dipole-like fluctuations in the initial-state density distribution. Higher harmonic flow in Cu+Au collisions exhibits similar trends to those observed in Au+Au and Pb+Pb collisions and is qualitatively reproduced by a viscous hydrodynamic model and a multi-phase transport model. For all harmonics with $nge2$ we observe an approximate scaling of $v_n$ with the number of constituent quarks.
We present a systematic analysis of two-pion interferometry in Au+Au collisions at $sqrt{s_{rm{NN}}}$ = 62.4 GeV and Cu+Cu collisions at $sqrt{s_{rm{NN}}}$ = 62.4 and 200 GeV using the STAR detector at RHIC. The multiplicity and transverse momentum d ependences of the extracted correlation lengths (radii) are studied. The scaling with charged particle multiplicity of the apparent system volume at final interaction is studied for the RHIC energy domain. The multiplicity scaling of the measured correlation radii is found to be independent of colliding system and collision energy.
We have studied the dependence of azimuthal anisotropy $v_2$ for inclusive and identified charged hadrons in Au$+$Au and Cu$+$Cu collisions on collision energy, species, and centrality. The values of $v_2$ as a function of transverse momentum $p_T$ a nd centrality in Au$+$Au collisions at $sqrt{s_{_{NN}}}$=200 GeV and 62.4 GeV are the same within uncertainties. However, in Cu$+$Cu collisions we observe a decrease in $v_2$ values as the collision energy is reduced from 200 to 62.4 GeV. The decrease is larger in the more peripheral collisions. By examining both Au$+$Au and Cu$+$Cu collisions we find that $v_2$ depends both on eccentricity and the number of participants, $N_{rm part}$. We observe that $v_2$ divided by eccentricity ($varepsilon$) monotonically increases with $N_{rm part}$ and scales as ${N_{rm part}^{1/3}}$. The Cu$+$Cu data at 62.4 GeV falls below the other scaled $v_{2}$ data. For identified hadrons, $v_2$ divided by the number of constituent quarks $n_q$ is independent of hadron species as a function of transverse kinetic energy $KE_T=m_T-m$ between $0.1<KE_T/n_q<1$ GeV. Combining all of the above scaling and normalizations, we observe a near-universal scaling, with the exception of the Cu$+$Cu data at 62.4 GeV, of $v_2/(n_qcdotvarepsiloncdot N^{1/3}_{rm part})$ vs $KE_T/n_q$ for all measured particles.
The $jpsi$ $pt$ spectrum and nuclear modification factor ($raa$) are reported for $pt < 5 gevc$ and $|y|<1$ from 0% to 60% central Au+Au and Cu+Cu collisions at $snn = 200 gev$ at STAR. A significant suppression of $pt$-integrated $jpsi$ production is observed in central Au+Au events. The Cu+Cu data are consistent with no suppression, although the precision is limited by the available statistics. $raa$ in Au+Au collisions exhibits a strong suppression at low transverse momentum and gradually increases with $pt$. The data are compared to high-$pt$ STAR results and previously published BNL Relativistic Heavy Ion Collider results. Comparing with model calculations, it is found that the invariant yields at low $pt$ are significantly above hydrodynamic flow predictions but are consistent with models that include color screening and regeneration.
We present the first measurement of charge-dependent directed flow in Cu+Au collisions at $sqrt{s_{_{NN}}}$ = 200 GeV. The results are presented as a function of the particle transverse momentum and pseudorapidity for different centralities. A finite difference between the directed flow of positive and negative charged particles is observed that qualitatively agrees with the expectations from the effects of the initial strong electric field between two colliding ions with different nuclear charges. The measured difference in directed flow is much smaller than that obtained from the parton-hadron-string-dynamics (PHSD) model, which suggests that most of the electric charges, i.e. quarks and antiquarks, have not yet been created during the lifetime of the strong electric field, which is of the order of, or less than, 1fm/$c$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا