ﻻ يوجد ملخص باللغة العربية
In the standard electroweak theory that describes nature, the Chern-Simons number associated with the vacua as well as the unstable sphaleron solutions play a crucial role in the baryon number violating processes. We recall why the Chern-Simons number should be generalized from a set of discrete values to a dynamical (quantum) variable. Via the construction of an appropriate Hopf invariant and the winding number, we discuss how the geometric information in the gauge fields is also captured in the Higgs field. We then discuss the choice of the Hopf variable in relation to the Chern-Simons variable.
We consider a large-N Chern-Simons theory for the attractive bosonic matter (Jackiw-Pi model) in the Hamiltonian collective-field approach based on the 1/N expansion. We show that the dynamics of low-lying density excitations around the ground-state
We study SU(N) Yang-Mills-Chern-Simons theory in the presence of defects that shift the Chern-Simons level from a holographic point of view by embedding the system in string theory. The model is a D3-D7 system in Type IIB string theory, whose gravity
In this paper we continue the study of the model proposed in the previous paper hep-th/0002077. The model consist of a system of extended objects of diverse dimensionalities, with or without boundaries, with actions of the Chern-Simons form for a sup
Noncommutative Maxwell-Chern-Simons theory in 3-dimensions is defined in terms of star product and noncommutative fields. Seiberg-Witten map is employed to write it in terms of ordinary fields. A parent action is introduced and the dual action is der
We show that the four-dimensional Chern-Simons theory studied by Costello, Witten and Yamazaki, is, with Nahm pole-type boundary conditions, dual to a boundary theory that is a three-dimensional analogue of Toda theory with a novel 3d W-algebra symme