ﻻ يوجد ملخص باللغة العربية
This letter proposes a sparse diffusion steepest-descent algorithm for one bit compressed sensing in wireless sensor networks. The approach exploits the diffusion strategy from distributed learning in the one bit compressed sensing framework. To estimate a common sparse vector cooperatively from only the sign of measurements, steepest-descent is used to minimize the suitable global and local convex cost functions. A diffusion strategy is suggested for distributive learning of the sparse vector. Simulation results show the effectiveness of the proposed distributed algorithm compared to the state-of-the-art non distributive algorithms in the one bit compressed sensing framework.
Is it possible to obliviously construct a set of hyperplanes H such that you can approximate a unit vector x when you are given the side on which the vector lies with respect to every h in H? In the sparse recovery literature, where x is approximatel
The goal of compressed sensing is to estimate a high dimensional vector from an underdetermined system of noisy linear equations. In analogy to classical compressed sensing, here we assume a generative model as a prior, that is, we assume the vector
In compressed sensing, a small number of linear measurements can be used to reconstruct an unknown signal. Existing approaches leverage assumptions on the structure of these signals, such as sparsity or the availability of a generative model. A domai
We introduce a recursive algorithm for performing compressed sensing on streaming data. The approach consists of a) recursive encoding, where we sample the input stream via overlapping windowing and make use of the previous measurement in obtaining t
The 1-bit compressed sensing framework enables the recovery of a sparse vector x from the sign information of each entry of its linear transformation. Discarding the amplitude information can significantly reduce the amount of data, which is highly b