ﻻ يوجد ملخص باللغة العربية
Anomalous b --> s transitions from LHCb data may suggest a new massive gauge boson Z that couples to the left-handed b --> s current, which in turn implies a coupling to the t --> c current. In this paper, we study flavor-changing neutral current (FCNC) decays of the top quark induced by a Z boson, namely t --> c Z, based on a model of the gauged L_mu - L_tau symmetry (the difference between the muon and tauon numbers) with vector-like quarks, which was introduced to explain the anomalous LHCb data. We illustrate that searching for t --> c Z via Z --> mu^+ mu^- with LHC Run 1 data can already probe a parameter region which is unexplored by B physics for the Z mass around O(10) GeV or more. We further extend the model to very light Z with mass below 400 MeV, which is motivated by the muon g-2 anomaly. Taking rare B and K meson decay data into account, we give upper limits on the t --> c Z branching ratio for the light Z case, and discuss about its observability at the LHC. We also scrutinize the possibility that the decay K_L --> pi^0 Z with Z --> nu nubar may lead to apparent violation of the usual Grossman-Nir bound of B(K_L --> pi^0 nu nubar) < 1.4 x 10^-9.
We present a comprehensive analysis of the loop induced top quark FCNC signals at the LHC within one class of the simplified model. The loop level FCNC interactions are well motivated to avoid the hierarchy of the top quark couplings from the new phy
The ATLAS experiment sensitivity to top quark Flavour Changing Neutral Current (FCNC) decays was studied at LHC using ttbar events. While one of the top quarks is expected to follow the dominant Standard Model decay t->bW, the other decays through a
In this work, we calculate the form factors for $J/psito bar{D}^{(*)0}$ induced by the flavor changing neutral currents (FCNC) in terms of the QCD sum rules. Making use of these form factors, we further calculate the branching fractions of semilepton
We present results for the differential distributions of jets from non-leptonic decays of polarized top quarks within the Standard Model, including QCD radiative corrections. Our work extends existing results which are only available for semileptonic
Precision tests of the Kobayashi-Maskawa model of CP violation are discussed, pointing out possible signatures for other sources of CP violation and for new flavor-changing operators. The current status of the most accurate tests is summarized.