ﻻ يوجد ملخص باللغة العربية
The ATLAS experiment sensitivity to top quark Flavour Changing Neutral Current (FCNC) decays was studied at LHC using ttbar events. While one of the top quarks is expected to follow the dominant Standard Model decay t->bW, the other decays through a FCNC channel, i.e. t-> Z u(c), t-> gamma u(c) or t-> g u(c). Different types of analyses, applied to each FCNC decay mode, were compared. The FCNC branching ratio sensitivity (assuming a 5sigma signal significance) and 95% confidence level limits on the branching ratios (in the hypothesis of signal absence) were obtained.
Stringent tests on top quark production and decay mechanisms are provided by the measurement of the top quark and W boson polarization. This paper presents a detailed study of these two measurements with the ATLAS detector, in the semileptonic (ttbar
Anomalous b --> s transitions from LHCb data may suggest a new massive gauge boson Z that couples to the left-handed b --> s current, which in turn implies a coupling to the t --> c current. In this paper, we study flavor-changing neutral current (FC
The LHC experiments will perform sensitive tests of physics beyond the Standard Model (BSM). The investigation of decays of beauty hadrons represents an alternative approach in addition to direct BSM searches. The ATLAS and CMS efforts concentrate on
Recent measurements of top quark properties using $t{bar t}$ events produced in proton-proton collisions at the Large Hadron Collider with centre of mass energies of 7 and 8 TeV and detected by the ATLAS experiment are presented. These results includ
The large ttbar production cross-section at the LHC suggests the use of top quark decays to calibrate several critical parts of the detectors, such as the trigger system, the jet energy scale and b-tagging.