ترغب بنشر مسار تعليمي؟ اضغط هنا

Computing the $L_1$ Geodesic Diameter and Center of a Polygonal Domain

123   0   0.0 ( 0 )
 نشر من قبل Haitao Wang
 تاريخ النشر 2015
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

For a polygonal domain with $h$ holes and a total of $n$ vertices, we present algorithms that compute the $L_1$ geodesic diameter in $O(n^2+h^4)$ time and the $L_1$ geodesic center in $O((n^4+n^2 h^4)alpha(n))$ time, respectively, where $alpha(cdot)$ denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in $O(n^{7.73})$ or $O(n^7(h+log n))$ time, and compute the geodesic center in $O(n^{11}log n)$ time. Therefore, our algorithms are significantly faster than the algorithms for the Euclidean problems. Our algorithms are based on several interesting observations on $L_1$ shortest paths in polygonal domains.



قيم البحث

اقرأ أيضاً

We show that the geodesic diameter of a polygonal domain with n vertices can be computed in O(n^4 log n) time by considering O(n^3) candidate diameter endpoints; the endpoints are a subset of vertices of the overlay of shortest path maps from vertices of the domain.
We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of $n$ vertices and $h$ holes. We introduce a emph{graph of oriented distances} to encode the distance between pairs of poin ts of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in $min {,O(n^omega), O(n^2 + nh log h + chi^2),}$ time, where $omega<2.373$ denotes the matrix multiplication exponent and $chiin Omega(n)cap O(n^2)$ is the number of edges of the graph of oriented distances. We also provide a faster algorithm for computing the diameter that runs in $O(n^2 log n)$ time.
124 - Haitao Wang 2019
Let $mathcal{P}$ be a polygonal domain of $h$ holes and $n$ vertices. We study the problem of constructing a data structure that can compute a shortest path between $s$ and $t$ in $mathcal{P}$ under the $L_1$ metric for any two query points $s$ and $ t$. To do so, a standard approach is to first find a set of $n_s$ gateways for $s$ and a set of $n_t$ gateways for $t$ such that there exist a shortest $s$-$t$ path containing a gateway of $s$ and a gateway of $t$, and then compute a shortest $s$-$t$ path using these gateways. Previous algorithms all take quadratic $O(n_scdot n_t)$ time to solve this problem. In this paper, we propose a divide-and-conquer technique that solves the problem in $O(n_s + n_t log n_s)$ time. As a consequence, we construct a data structure of $O(n+(h^2log^3 h/loglog h))$ size in $O(n+(h^2log^4 h/loglog h))$ time such that each query can be answered in $O(log n)$ time.
Given a simple polygon $P$ and a set $Q$ of points contained in $P$, we consider the geodesic $k$-center problem where we want to find $k$ points, called emph{centers}, in $P$ to minimize the maximum geodesic distance of any point of $Q$ to its close st center. In this paper, we focus on the case for $k=2$ and present the first exact algorithm that efficiently computes an optimal $2$-center of $Q$ with respect to the geodesic distance in $P$.
In 2015, Driemel, Krivov{s}ija and Sohler introduced the $(k,ell)$-median problem for clustering polygonal curves under the Frechet distance. Given a set of input curves, the problem asks to find $k$ median curves of at most $ell$ vertices each that minimize the sum of Frechet distances over all input curves to their closest median curve. A major shortcoming of their algorithm is that the input curves are restricted to lie on the real line. In this paper, we present a randomized bicriteria-approximation algorithm that works for polygonal curves in $mathbb{R}^d$ and achieves approximation factor $(1+epsilon)$ with respect to the clustering costs. The algorithm has worst-case running-time linear in the number of curves, polynomial in the maximum number of vertices per curve, i.e. their complexity, and exponential in $d$, $ell$, $epsilon$ and $delta$, i.e., the failure probability. We achieve this result through a shortcutting lemma, which guarantees the existence of a polygonal curve with similar cost as an optimal median curve of complexity $ell$, but of complexity at most $2ell-2$, and whose vertices can be computed efficiently. We combine this lemma with the superset-sampling technique by Kumar et al. to derive our clustering result. In doing so, we describe and analyze a generalization of the algorithm by Ackermann et al., which may be of independent interest.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا