ﻻ يوجد ملخص باللغة العربية
Given a simple polygon $P$ and a set $Q$ of points contained in $P$, we consider the geodesic $k$-center problem where we want to find $k$ points, called emph{centers}, in $P$ to minimize the maximum geodesic distance of any point of $Q$ to its closest center. In this paper, we focus on the case for $k=2$ and present the first exact algorithm that efficiently computes an optimal $2$-center of $Q$ with respect to the geodesic distance in $P$.
We study the geodesic Voronoi diagram of a set $S$ of $n$ linearly moving sites inside a static simple polygon $P$ with $m$ vertices. We identify all events where the structure of the Voronoi diagram changes, bound the number of such events, and then
Given a set of point sites in a simple polygon, the geodesic farthest-point Voronoi diagram partitions the polygon into cells, at most one cell per site, such that every point in a cell has the same farthest site with respect to the geodesic metric.
For a polygonal domain with $h$ holes and a total of $n$ vertices, we present algorithms that compute the $L_1$ geodesic diameter in $O(n^2+h^4)$ time and the $L_1$ geodesic center in $O((n^4+n^2 h^4)alpha(n))$ time, respectively, where $alpha(cdot)$
Deciding whether a family of disjoint line segments in the plane can be linked into a simple polygon (or a simple polygonal chain) by adding segments between their endpoints is NP-hard.
Throughout this paper, a persistence diagram ${cal P}$ is composed of a set $P$ of planar points (each corresponding to a topological feature) above the line $Y=X$, as well as the line $Y=X$ itself, i.e., ${cal P}=Pcup{(x,y)|y=x}$. Given a set of per