ترغب بنشر مسار تعليمي؟ اضغط هنا

Rectilinear Link Diameter and Radius in a Rectilinear Polygonal Domain

115   0   0.0 ( 0 )
 نشر من قبل Elena Arseneva
 تاريخ النشر 2017
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

We study the computation of the diameter and radius under the rectilinear link distance within a rectilinear polygonal domain of $n$ vertices and $h$ holes. We introduce a emph{graph of oriented distances} to encode the distance between pairs of points of the domain. This helps us transform the problem so that we can search through the candidates more efficiently. Our algorithm computes both the diameter and the radius in $min {,O(n^omega), O(n^2 + nh log h + chi^2),}$ time, where $omega<2.373$ denotes the matrix multiplication exponent and $chiin Omega(n)cap O(n^2)$ is the number of edges of the graph of oriented distances. We also provide a faster algorithm for computing the diameter that runs in $O(n^2 log n)$ time.



قيم البحث

اقرأ أيضاً

We consider the problem of finding minimum-link rectilinear paths in rectilinear polygonal domains in the plane. A path or a polygon is rectilinear if all its edges are axis-parallel. Given a set $mathcal{P}$ of $h$ pairwise-disjoint rectilinear poly gonal obstacles with a total of $n$ vertices in the plane, a minimum-link rectilinear path between two points is a rectilinear path that avoids all obstacles with the minimum number of edges. In this paper, we present a new algorithm for finding minimum-link rectilinear paths among $mathcal{P}$. After the plane is triangulated, with respect to any source point $s$, our algorithm builds an $O(n)$-size data structure in $O(n+hlog h)$ time, such that given any query point $t$, the number of edges of a minimum-link rectilinear path from $s$ to $t$ can be computed in $O(log n)$ time and the actual path can be output in additional time linear in the number of the edges of the path. The previously best algorithm computes such a data structure in $O(nlog n)$ time.
132 - Anil Maheshwari , Arash Nouri , 2018
This paper presents an optimal $Theta(n log n)$ algorithm for determining time-minimal rectilinear paths among $n$ transient rectilinear obstacles. An obstacle is transient if it exists in the scene only for a specific time interval, i.e., it appears and then disappears at specific times. Given a point robot moving with bounded speed among transient rectilinear obstacles and a pair of points $s$, $d$, we determine a time-minimal, obstacle-avoiding path from $s$ to $d$. The main challenge in solving this problem arises as the robot may be required to wait for an obstacle to disappear, before it can continue moving toward the destination. Our algorithm builds on the continuous Dijkstra paradigm, which simulates propagating a wavefront from the source point. We also solve a query version of this problem. For this, we build a planar subdivision with respect to a fixed source point, so that minimum arrival time to any query point can be reported in $O(log n)$ time, using point location for the query point in this subdivision.
For a polygonal domain with $h$ holes and a total of $n$ vertices, we present algorithms that compute the $L_1$ geodesic diameter in $O(n^2+h^4)$ time and the $L_1$ geodesic center in $O((n^4+n^2 h^4)alpha(n))$ time, respectively, where $alpha(cdot)$ denotes the inverse Ackermann function. No algorithms were known for these problems before. For the Euclidean counterpart, the best algorithms compute the geodesic diameter in $O(n^{7.73})$ or $O(n^7(h+log n))$ time, and compute the geodesic center in $O(n^{11}log n)$ time. Therefore, our algorithms are significantly faster than the algorithms for the Euclidean problems. Our algorithms are based on several interesting observations on $L_1$ shortest paths in polygonal domains.
A rectilinear polygon is a polygon whose edges are axis-aligned. Walking counterclockwise on the boundary of such a polygon yields a sequence of left turns and right turns. The number of left turns always equals the number of right turns plus 4. It i s known that any such sequence can be realized by a rectilinear polygon. In this paper, we consider the problem of finding realizations that minimize the perimeter or the area of the polygon or the area of the bounding box of the polygon. We show that all three problems are NP-hard in general. This answers an open question of Patrignani [CGTA 2001], who showed that it is NP-hard to minimize the area of the bounding box of an orthogonal drawing of a given planar graph. We also show that realizing polylines with minimum bounding box area is NP-hard. Then we consider the special cases of $x$-monotone and $xy$-monotone rectilinear polygons. For these, we can optimize the three objectives efficiently.
We show that the geodesic diameter of a polygonal domain with n vertices can be computed in O(n^4 log n) time by considering O(n^3) candidate diameter endpoints; the endpoints are a subset of vertices of the overlay of shortest path maps from vertices of the domain.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا