ترغب بنشر مسار تعليمي؟ اضغط هنا

Long wavelength perfect fluidity from short distance jet transport in quark-gluon plasmas

87   0   0.0 ( 0 )
 نشر من قبل Jiechen Xu
 تاريخ النشر 2015
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We build a new phenomenological framework that bridges the long wavelength bulk viscous transport properties of the strongly-coupled quark-gluon plasma (sQGP) and short distance hard jet transport properties in the QGP. The full nonperturbative chromo-electric (E) and chromo-magnetic (M) structure of the near perfect fluid like sQGP in the critical transition region are integrated into a semi-Quark-Gluon-Monopole Plasma (sQGMP) model lattice-compatibly and implemented into the new CUJET3.0 jet quenching framework. All observables computed from CUJET3.0 are found to be consistent with available data at RHIC and LHC simultaneously. A quantitative connection between the shear viscosity and jet transport parameter is rigorously established within this framework. We deduce the $T=160-600$ MeV dependence of the QGPs $eta/s$: its near vanishing value in the near $T_c$ regime is determined by the composition of E and M charges, it increases as $T$ rises, and its high $T$ limit is fixed by color screening scales.

قيم البحث

اقرأ أيضاً

A Linearized Boltzmann Transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both ela stic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of the $D$ meson suppression and elliptic flow observed at the LHC and RHIC. The prediction for the Pb-Pb collisions at $sqrt{s_mathrm{NN}}$=5.02~TeV is provided.
Several transport models have been employed in recent years to analyze heavy-flavor meson spectra in high-energy heavy-ion collisions. Heavy-quark transport coefficients extracted from these models with their default parameters vary, however, by up t o a factor of 5 at high momenta. To investigate the origin of this large theoretical uncertainty, a systematic comparison of heavy-quark transport coefficients is carried out between various transport models. Within a common scheme devised for the nuclear modification factor of charm quarks in a brick medium of a quark-gluon plasma, the systematic uncertainty of the extracted drag coefficient among these models is shown to be reduced to a factor of 2, which can be viewed as the smallest intrinsic systematical error band achievable at present time. This indicates the importance of a realistic hydrodynamic evolution constrained by bulk hadron spectra and of heavy-quark hadronization for understanding the final heavy-flavor hadron spectra and extracting heavy-quark drag coefficient. The transverse transport coefficient is less constrained due to the influence of the underlying mechanism for heavy-quark medium interaction. Additional constraints on transport models such as energy loss fluctuation and transverse-momentum broadening can further reduce theoretical uncertainties in the extracted transport coefficients.
We present a new determination of $hat{q}$, the jet transport coefficient of the quark-gluon plasma. Using the JETSCAPE framework, we use Bayesian parameter estimation to constrain the dependence of $hat{q}$ on the jet energy, virtuality, and medium temperature from experimental measurements of inclusive hadron suppression in Au-Au collisions at RHIC and Pb-Pb collisions at the LHC. These results are based on a multi-stage theoretical approach to in-medium jet evolution with the MATTER and LBT jet quenching models. The functional dependence of $hat{q}$ on jet energy, virtuality, and medium temperature is based on a perturbative picture of in-medium scattering, with components reflecting the different regimes of applicability of MATTER and LBT. The correlation of experimental systematic uncertainties is accounted for in the parameter extraction. These results provide state-of-the-art constraints on $hat{q}$ and lay the groundwork to extract additional properties of the quark-gluon plasma from jet measurements in heavy-ion collisions.
We propose a new approach to initialize the hydrodynamic fields such as energy density distributions and four flow velocity fields in hydrodynamic modeling of high-energy nuclear collisions at the collider energies. Instead of matching the energy-mom entum tensor or putting the initial conditions of quark-gluon fluids at a fixed initial time, we utilize a framework of relativistic hydrodynamic equations with source terms to describe the initial stage. Putting the energy and momentum loss rate of the initial partons into the source terms, we obtain hydrodynamic initial conditions dynamically. The resultant initial profile of the quark-gluon fluid looks highly bumpy as seen in the conventional event-by-event initial conditions. In addition, initial random flow velocity fields also are generated as a consequence of momentum deposition from the initial partons. We regard the partons that survive after the dynamical initialization process as the mini-jets and find sizable effects of both mini-jet propagation in the quark-gluon fluids and initial random transverse flow on the final momentum spectra and anisotropic flow observables. We perform event-by-event $(3+1)$-dimensional ideal hydrodynamic simulations with this new framework that enables us to describe the hydrodynamic bulk collectivity, parton energy loss, and interplay among them in a unified manner.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso ciated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا