ترغب بنشر مسار تعليمي؟ اضغط هنا

Determining the jet transport coefficient $hat{q}$ of the quark-gluon plasma using Bayesian parameter estimation

307   0   0.0 ( 0 )
 نشر من قبل James Mulligan
 تاريخ النشر 2021
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new determination of $hat{q}$, the jet transport coefficient of the quark-gluon plasma. Using the JETSCAPE framework, we use Bayesian parameter estimation to constrain the dependence of $hat{q}$ on the jet energy, virtuality, and medium temperature from experimental measurements of inclusive hadron suppression in Au-Au collisions at RHIC and Pb-Pb collisions at the LHC. These results are based on a multi-stage theoretical approach to in-medium jet evolution with the MATTER and LBT jet quenching models. The functional dependence of $hat{q}$ on jet energy, virtuality, and medium temperature is based on a perturbative picture of in-medium scattering, with components reflecting the different regimes of applicability of MATTER and LBT. The correlation of experimental systematic uncertainties is accounted for in the parameter extraction. These results provide state-of-the-art constraints on $hat{q}$ and lay the groundwork to extract additional properties of the quark-gluon plasma from jet measurements in heavy-ion collisions.

قيم البحث

اقرأ أيضاً

104 - S. Cao , Y. Chen , J. Coleman 2021
We report a new determination of $hat{q}$, the jet transport coefficient of the Quark-Gluon Plasma. We use the JETSCAPE framework, which incorporates a novel multi-stage theoretical approach to in-medium jet evolution and Bayesian inference for param eter extraction. The calculations, based on the MATTER and LBT jet quenching models, are compared to experimental measurements of inclusive hadron suppression in Au+Au collisions at RHIC and Pb+Pb collisions at the LHC. The correlation of experimental systematic uncertainties is accounted for in the parameter extraction. The functional dependence of $hat{q}$ on jet energy or virtuality and medium temperature is based on a perturbative picture of in-medium scattering, with components reflecting the different regimes of applicability of MATTER and LBT. In the multi-stage approach, the switch between MATTER and LBT is governed by a virtuality scale $Q_0$. Comparison of the posterior model predictions to the RHIC and LHC hadron suppression data shows reasonable agreement, with moderate tension in limited regions of phase space. The distribution of $hat{q}/T^3$ extracted from the posterior distributions exhibits weak dependence on jet momentum and medium temperature $T$, with 90% Credible Region (CR) depending on the specific choice of model configuration. The choice of MATTER+LBT, with switching at virtuality $Q_0$, has 90% CR of $2<hat{q}/T^3<4$ for $p_mathrm{T}^mathrm{jet}>40$ GeV/c. The value of $Q_0$, determined here for the first time, is in the range 2.0-2.7 GeV.
A Linearized Boltzmann Transport (LBT) model coupled with hydrodynamical background is established to describe the evolution of jet shower partons and medium excitations in high energy heavy-ion collisions. We extend the LBT model to include both ela stic and inelastic processes for light and heavy partons in the quark-gluon plasma. A hybrid model of fragmentation and coalescence is developed for the hadronization of heavy quarks. Within this framework, we investigate how heavy flavor observables depend on various ingredients, such as different energy loss and hadronization mechanisms, the momentum and temperature dependences of the transport coefficients, and the radial flow of the expanding fireball. Our model calculations show good descriptions of the $D$ meson suppression and elliptic flow observed at the LHC and RHIC. The prediction for the Pb-Pb collisions at $sqrt{s_mathrm{NN}}$=5.02~TeV is provided.
Several transport models have been employed in recent years to analyze heavy-flavor meson spectra in high-energy heavy-ion collisions. Heavy-quark transport coefficients extracted from these models with their default parameters vary, however, by up t o a factor of 5 at high momenta. To investigate the origin of this large theoretical uncertainty, a systematic comparison of heavy-quark transport coefficients is carried out between various transport models. Within a common scheme devised for the nuclear modification factor of charm quarks in a brick medium of a quark-gluon plasma, the systematic uncertainty of the extracted drag coefficient among these models is shown to be reduced to a factor of 2, which can be viewed as the smallest intrinsic systematical error band achievable at present time. This indicates the importance of a realistic hydrodynamic evolution constrained by bulk hadron spectra and of heavy-quark hadronization for understanding the final heavy-flavor hadron spectra and extracting heavy-quark drag coefficient. The transverse transport coefficient is less constrained due to the influence of the underlying mechanism for heavy-quark medium interaction. Additional constraints on transport models such as energy loss fluctuation and transverse-momentum broadening can further reduce theoretical uncertainties in the extracted transport coefficients.
We report the effect of magnetic field on estimation of jet transport coefficient, $hat{q}$ using a simplified quasi-particle model. Our adopted quasi-particle model introduces temperature and magnetic field dependent degeneracy factors of partons, w hich are tuned by fitting the magneto-thermodynamical data of lattice quantum chromodynamics. In absence of magnetic field, $hat{q}$ is estimated by using the temperature dependent degeneracy factor. At finite magnetic field, ${hat q}$ splits into parallel and perpendicular components, whose magnetic field dependent part has two sources. One is field dependent degeneracy factor and another is phase space part, guided from shear viscosity to entropy density ratio. Their collective role provides an enhanced jet transport coefficients, which should be considered in detailed jet quenching phenomenology in presence of magnetic field.
We study the evolution of the quark-gluon composition of the plasma created in ultra-Relativistic Heavy-Ion Collisions (uRHICs) employing a partonic transport theory that includes both elastic and inelastic collisions plus a mean fields dynamics asso ciated to the widely used quasi-particle model. The latter, able to describe lattice QCD thermodynamics, implies a chemical equilibrium ratio between quarks and gluons strongly increasing as $Trightarrow T_c$, the phase transition temperature. Accordingly we see in realistic simulations of uRHICs a rapid evolution from a gluon dominated initial state to a quark dominated plasma close to $T_c$. The quark to gluon ratio can be modified by about a factor of $sim 20$ in the bulk of the system and appears to be large also in the high $p_T$ region. We discuss how this aspect, often overflown, can be important for a quantitative study of several key issues in the QGP physics: shear viscosity, jet quenching, quarkonia suppression. Furthermore a bulk plasma made by more than $80%$ of quarks plus antiquarks provides a theoretical basis for hadronization via quark coalescence.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا