ﻻ يوجد ملخص باللغة العربية
This paper deals with properties of the algebraic variety defined as the set of zeros of a typical sequence of polynomials. We consider various types of nice varieties: set-theoretic and ideal-theoretic complete intersections, absolutely irreducible ones, and nonsingular ones. For these types, we present a nonzero obstruction polynomial of explicitly bounded degree in the coefficients of the sequence that vanishes if its variety is not of the type. Over finite fields, this yields bounds on the number of such sequences. We also show that most sequences (of at least two polynomials) define a degenerate variety, namely an absolutely irreducible nonsingular hypersurface in some linear projective subspace.
Rank-2 Drinfeld modules are a function-field analogue of elliptic curves, and the purpose of this paper is to investigate similarities and differences between rank-2 Drinfeld modules and elliptic curves in terms of supersingularity. Specifically, we
$V$ is a complete intersection scheme in a multiprojective space if it can be defined by an ideal $I$ with as many generators as $textrm{codim}(V)$. We investigate the multigraded regularity of complete intersections scheme in $mathbb{P}^ntimes mathb
We define logarithmic tangent sheaves associated with complete intersections in connection with Jacobian syzygies and distributions. We analyse the notions of local freeness, freeness and stability of these sheaves. We carry out a complete study of l
We prove that a smooth complete intersection of two quadrics of dimension at least $2$ over a number field has index dividing $2$, i.e., that it possesses a rational $0$-cycle of degree $2$.
We consider the Hamiltonian flow on complex complete intersection surfaces with isolated singularities, equipped with the Jacobian Poisson structure. More generally we consider complete intersections of arbitrary dimension equipped with Hamiltonian f