ﻻ يوجد ملخص باللغة العربية
We define logarithmic tangent sheaves associated with complete intersections in connection with Jacobian syzygies and distributions. We analyse the notions of local freeness, freeness and stability of these sheaves. We carry out a complete study of logarithmic sheaves associated with pencils of quadrics and compute their projective dimension from the classical invariants such as the Segre symbol and new invariants (splitting type and degree vector) designed for the classification of irregular pencils. This leads to a complete classification of free (equivalently, locally free) pencils of quadrics. Finally we produce examples of locally free, non free pencils of surfaces in P3 of any degree k at least 3, answering (in the negative) a question of Calvo-Andrade, Cerveau, Giraldo and Lins Neto about codimension foliations on P3 .
$V$ is a complete intersection scheme in a multiprojective space if it can be defined by an ideal $I$ with as many generators as $textrm{codim}(V)$. We investigate the multigraded regularity of complete intersections scheme in $mathbb{P}^ntimes mathb
We consider generalized complete intersection manifolds in the product space of projective spaces, and work out useful aspects pertaining to the cohomology of sheaves over them. First, we present and prove a vanishing theorem on the cohomology groups
Let $(A,mathfrak{m})$ be an abstract complete intersection and let $P$ be a prime ideal of $A$. In [1] Avramov proved that $A_P$ is an abstract complete intersection. In this paper we give an elementary proof of this result.
Given an ideal $I=(f_1,ldots,f_r)$ in $mathbb C[x_1,ldots,x_n]$ generated by forms of degree $d$, and an integer $k>1$, how large can the ideal $I^k$ be, i.e., how small can the Hilbert function of $mathbb C[x_1,ldots,x_n]/I^k$ be? If $rle n$ the sma
Recently, nearly complete intersection ideals were defined by Boocher and Seiner to establish lower bounds on Betti numbers for monomial ideals (arXiv:1706.09866). Stone and Miller then characterized nearly complete intersections using the theory of