ﻻ يوجد ملخص باللغة العربية
A unique property of size-resolved metal nanocluster particles is their superatom-like electronic shell structure. The shell levels are highly degenerate, and it has been predicted that this can enable exceptionally strong superconducting-type electron pair correlations in certain clusters composed of just tens to hundreds of atoms. Here we report on the observation of a possible spectroscopic signature of such an effect. A bulge-like feature appears in the photoionization yield curve of a free cold aluminum cluster and shows a rapid rise as the temperature approaches approximately 100 K. This is an unusual effect, not previously reported for clusters. Its characteristics are consistent with an increase in the effective density of states accompanying a pairing transition, which suggests a high-temperature superconducting state with Tc>~100 K. Our results highlight the promise of metal nanoclusters as high-Tc building blocks for materials and networks.
A unique property of metal nanoclusters is the superatom shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally str
SrTiO$_3$ is a superconducting semiconductor with a pairing mechanism that is not well understood. SrTiO$_3$ undergoes a ferroelastic transition at $T=$ 105 K, leading to the formation of domains with boundaries that can couple to electronic properti
We report first principles theory based electronic structure studies of a semiconducting stoichiometric cage-like Cd9Te9 cluster. Substantial changes are observed in the electronic structure of the cluster on passivation with fictitious hydrogen atom
We study the time evolution of a system of fermions with pairing interactions at a finite temperature. The dynamics is triggered by an abrupt increase of the BCS coupling constant. We show that if initially the fermions are in a normal phase, the amp
In this review article, we show our recent results relating to the undoped (Ce-free) superconductivity in the electron-doped high-Tc cuprates with the so-called T structure. For an introduction, we briefly mention the characteristics of the electron-