ﻻ يوجد ملخص باللغة العربية
Topological superconductors represent a newly predicted phase of matter that is topologically distinct from conventional superconducting condensates of Cooper pairs. As a manifestation of their topological character, topological superconductors support solid-state realizations of Majorana fermions at their boundaries. The recently discovered superconductor CuxBi2Se3 has been theoretically proposed as an odd-parity superconductor in the time-reversal-invariant topological superconductor class and point-contact spectroscopy measurements have reported the observation of zero-bias conductance peaks corresponding to Majorana states in this material. Here we report scanning tunneling spectroscopy (STS) measurements of the superconducting energy gap in CuxBi2Se3 as a function of spatial position and applied magnetic field. The tunneling spectrum shows that the density of states at the Fermi level is fully gapped without any in-gap states. The spectrum is well described by the Bardeen-Cooper-Schrieffer (BCS) theory with a momentum independent order parameter, which suggests that Cu0.2Bi2Se3 is a classical s-wave superconductor contrary to previous expectations and measurements.
Spontaneous symmetry breaking is an important concept for understanding physics ranging from the elementary particles to states of matter. For example, the superconducting state breaks global gauge symmetry, and unconventional superconductors can bre
Bi2Se3 is one of a handful of known topological insulators. Here we show that copper intercalation in the van der Waals gaps between the Bi2Se3 layers, yielding an electron concentration of ~ 2 x 10^20cm-3, results in superconductivity at 3.8 K in Cu
We study a superconducting hetro-junction with one side characterized by the unconventional chiral $p$-wave gap function $p_xpm ip_y$ and the other side the conventional $s$-wave one. Though a relative phase of $pm frac{pi}{2}$ between any two compon
The possibility of non-s-wave superconductivity induced by phonons is investigated using a simple model that is inspired by Sr$_2$RuO$_4$. The model assumes a two-dimensional electronic structure, a two-dimensional spin-fluctuation spectrum, and thre
A unique property of metal nanoclusters is the superatom shell structure of their delocalized electrons. The electronic shell levels are highly degenerate and therefore represent sharp peaks in the density of states. This can enable exceptionally str