ترغب بنشر مسار تعليمي؟ اضغط هنا

The Inner Debris Structure in the Fomalhaut Planetary System

186   0   0.0 ( 0 )
 نشر من قبل Kate Y. L. Su
 تاريخ النشر 2015
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Kate Y. L. Su




اسأل ChatGPT حول البحث

Fomalhaut plays an important role in the study of debris disks and small bodies in other planetary systems. The proximity and luminosity of the star make key features of its debris, like the water ice-line, accessible. Here we present ALMA cycle 1, 870 mu m (345 GHz) observations targeted at the inner part of the Fomalhaut system with a synthesized beam of 0.45x0.37 (~3 AU linear resolution at the distance of Fomalhaut) and a rms of 26 mu Jy/beam. The high angular resolution and sensitivity of the ALMA data enable us to place strong constraints on the nature of the warm excess revealed by Spitzer and Herschel observations. We detect a point source at the star position with a total flux consistent with thermal emission from the stellar photosphere. No structures that are brighter than 3sigma are detected in the central 15 AU x 15 AU region. Modeling the spectral energy distribution using parameters expected for a dust-producing planetesimal belt indicates a radial location in the range ~8-15 AU. This is consistent with the location where ice sublimates in Fomalhaut, i.e., an asteroid-belt analog. The 3sigma upper limit for such a belt is <1.3 mJy at 870 mu m. We also interpret the 2 and 8-13 mu m interferometric measurements to reveal the structure in the inner 10 AU region as dust naturally connected to this proposed asteroid belt by Poynting-Robertson drag, dust sublimation, and magnetically trapped nano grains.

قيم البحث

اقرأ أيضاً

We present ALMA Band 6 observations (1.3 mm/233 GHz) of Fomalhaut and its debris disc. The observations achieve a sensitivity of 17 $mu$Jy and a resolution of 0.28 arcsec (2.1 au at a distance of 7.66 pc), which are the highest resolution observation s to date of the millimetre grains in Fomalhauts main debris ring. The ring is tightly constrained to $139^{+2}_{-3}$ au with a FWHM of $13pm3$ au, following a Gaussian profile. The millimetre spectral index is constrained to $alpha_{mm} = -2.62pm0.12$. We explore fitting debris disc models in the image plane, as well as fitting models using visibility data directly. The results are compared and the potential advantages/disadvantages of each approach are discussed. The detected central emission is indistinguishable from a point source, with a most probable flux of $0.90pm 0.12$ mJy (including calibration uncertainties). This implies that any inner debris structure, as was inferred from far-Infrared observations, must contribute little to the total central emission. Moreover, the stellar flux is less than 70% of that predicted by extrapolating a black body from the constrained stellar photosphere temperature. This result emphasizes that unresolved inner debris components cannot be fully characterized until the behaviour of the host stars intrinsic stellar emission at millimetre wavelengths is properly understood.
We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 $mu$Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt a MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of $136.3pm0.9$ AU and width of $13.5pm1.8$ AU. We determine a best-fit eccentricity of $0.12pm0.01$. Assuming a size distribution power law index of $q=3.46pm 0.09$, we constrain the dust absorptivity power law index $beta$ to be $0.9<beta<1.5$. The geometry of the disk is robustly constrained with inclination $65.!!^circ6pm0.!!^circ3$, position angle $337.!!^circ9pm0.!!^circ3$, and argument of periastron $22.!!^circ5pm4.!!^circ3$. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with HST, SCUBA, and ALMA. However, we cannot rule out structures $leq10$ AU in size or which only affect smaller grains. The central star is clearly detected with a flux density of $0.75pm0.02$ mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.
[Abridged] Debris disks are extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU as well as evidence of a warm dust component, which is suspected of being a bright analog to the solar syst ems zodiacal dust. Interferometric observations obtained with the VLTI and the KIN have identified near- and mid-infrared excesses attributed to hot and warm exozodiacal dust in the inner few AU of the star. We performed parametric modeling of the exozodiacal disk using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared measurements. A detailed treatment of sublimation temperatures was introduced to explore the hot population at the sublimation rim. We then used an analytical approach to successively testing several source mechanisms. A good fit to the data is found by two distinct dust populations: (1) very small, hence unbound, hot dust grains confined in a narrow region at the sublimation rim of carbonaceous material; (2) bound grains at 2 AU that are protected from sublimation and have a higher mass despite their fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of aggregates that originate from the warm component. A mechanism, such as gas braking, is required to further confine the small grains for a long enough time. In situ dust production could hardly be ensured for the age of the star, so the observed amount of dust must be triggered by intense dynamical activity. Fomalhaut may be representative of exozodis that are currently being surveyed worldwide. We propose a framework for reconciling the hot exozodi phenomenon with theoretical constraints: the hot component of Fomalhaut is likely the tip of the iceberg since it could originate from a warm counterpart residing near the ice line.
Fomalhaut C (LP 876-10) is a low mass M4V star in the intriguing Fomalhaut triple system and, like Fomalhaut A, possesses a debris disc. It is one of very few nearby M-dwarfs known to host a debris disc and of these has by far the lowest stellar mass . We present new resolved observations of the debris disc around Fomalhaut C with the Atacama Large Millimetre Array which allow us to model its properties and investigate the systems unique history. The ring has a radius of 26 au and a narrow full width at half maximum of at most 4.2 au. We find a 3$sigma$ upper limit on the eccentricity of 0.14, neither confirming nor ruling out previous dynamic interactions with Fomalhaut A that could have affected Fomalhaut Cs disc. We detect no $^{12}$CO J=3-2 emission in the system and do not detect the disc in scattered light with HST/STIS or VLT/SPHERE. We find the original Herschel detection to be consistent with our ALMA models radial size. We place the disc in the context of the wider debris disc population and find that its radius is as expected from previous disc radius-host luminosity trends. Higher signal-to-noise observations of the system would be required to further constrain the disc properties and provide further insight to the history of the Fomalhaut triple system as a whole.
Vega and Fomalhaut, are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred as debris disk twins. We present Spitzer 10-35 um spectroscopic data centered at both stars, and identify warm, unresolved e xcess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of ~30 um from both warm components is well described as a blackbody emission of ~170 K. Interestingly, two other systems, eps Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar systems zodiacal dust cloud, but of far greater. The dust temperature and tentative detections in the submillimeter suggest the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 um hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt. We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio >~10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture, and suggest that multiple, low-mass planets likely reside between the two belts in Vega and Fomalhaut.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا