ترغب بنشر مسار تعليمي؟ اضغط هنا

An interferometric study of the Fomalhaut inner debris disk. III. Detailed models of the exozodiacal disk and its origin

69   0   0.0 ( 0 )
 نشر من قبل J\\'er\\'emy Lebreton
 تاريخ النشر 2013
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

[Abridged] Debris disks are extrasolar analogs to the solar system planetesimal belts. The star Fomalhaut harbors a cold debris belt at 140 AU as well as evidence of a warm dust component, which is suspected of being a bright analog to the solar systems zodiacal dust. Interferometric observations obtained with the VLTI and the KIN have identified near- and mid-infrared excesses attributed to hot and warm exozodiacal dust in the inner few AU of the star. We performed parametric modeling of the exozodiacal disk using the GRaTeR radiative transfer code to reproduce the interferometric data, complemented by mid- to far-infrared measurements. A detailed treatment of sublimation temperatures was introduced to explore the hot population at the sublimation rim. We then used an analytical approach to successively testing several source mechanisms. A good fit to the data is found by two distinct dust populations: (1) very small, hence unbound, hot dust grains confined in a narrow region at the sublimation rim of carbonaceous material; (2) bound grains at 2 AU that are protected from sublimation and have a higher mass despite their fainter flux level. We propose that the hot dust is produced by the release of small carbon grains following the disruption of aggregates that originate from the warm component. A mechanism, such as gas braking, is required to further confine the small grains for a long enough time. In situ dust production could hardly be ensured for the age of the star, so the observed amount of dust must be triggered by intense dynamical activity. Fomalhaut may be representative of exozodis that are currently being surveyed worldwide. We propose a framework for reconciling the hot exozodi phenomenon with theoretical constraints: the hot component of Fomalhaut is likely the tip of the iceberg since it could originate from a warm counterpart residing near the ice line.

قيم البحث

اقرأ أيضاً

We present ALMA mosaic observations at 1.3 mm (223 GHz) of the Fomalhaut system with a sensitivity of 14 $mu$Jy/beam. These observations provide the first millimeter map of the continuum dust emission from the complete outer debris disk with uniform sensitivity, enabling the first conclusive detection of apocenter glow. We adopt a MCMC modeling approach that accounts for the eccentric orbital parameters of a collection of particles within the disk. The outer belt is radially confined with an inner edge of $136.3pm0.9$ AU and width of $13.5pm1.8$ AU. We determine a best-fit eccentricity of $0.12pm0.01$. Assuming a size distribution power law index of $q=3.46pm 0.09$, we constrain the dust absorptivity power law index $beta$ to be $0.9<beta<1.5$. The geometry of the disk is robustly constrained with inclination $65.!!^circ6pm0.!!^circ3$, position angle $337.!!^circ9pm0.!!^circ3$, and argument of periastron $22.!!^circ5pm4.!!^circ3$. Our observations do not confirm any of the azimuthal features found in previous imaging studies of the disk with HST, SCUBA, and ALMA. However, we cannot rule out structures $leq10$ AU in size or which only affect smaller grains. The central star is clearly detected with a flux density of $0.75pm0.02$ mJy, significantly lower than predicted by current photospheric models. We discuss the implications of these observations for the directly imaged Fomalhaut b and the inner dust belt detected at infrared wavelengths.
Vega and Fomalhaut, are similar in terms of mass, ages, and global debris disk properties; therefore, they are often referred as debris disk twins. We present Spitzer 10-35 um spectroscopic data centered at both stars, and identify warm, unresolved e xcess emission in the close vicinity of Vega for the first time. The properties of the warm excess in Vega are further characterized with ancillary photometry in the mid infrared and resolved images in the far-infrared and submillimeter wavelengths. The Vega warm excess shares many similar properties with the one found around Fomalhaut. The emission shortward of ~30 um from both warm components is well described as a blackbody emission of ~170 K. Interestingly, two other systems, eps Eri and HR 8799, also show such an unresolved warm dust using the same approach. These warm components may be analogous to the solar systems zodiacal dust cloud, but of far greater. The dust temperature and tentative detections in the submillimeter suggest the warm excess arises from dust associated with a planetesimal ring located near the water-frost line and presumably created by processes occurring at similar locations in other debris systems as well. We also review the properties of the 2 um hot excess around Vega and Fomalhaut, showing that the dust responsible for the hot excess is not spatially associated with the dust we detected in the warm belt. We suggest it may arise from hot nano grains trapped in the magnetic field of the star. Finally, the separation between the warm and cold belt is rather large with an orbital ratio >~10 in all four systems. In light of the current upper limits on the masses of planetary objects and the large gap, we discuss the possible implications for their underlying planetary architecture, and suggest that multiple, low-mass planets likely reside between the two belts in Vega and Fomalhaut.
142 - O. Absil , L. Marion , S. Ertel 2021
(abridged) Context. The origin of hot exozodiacal dust and its connection with outer dust reservoirs remains unclear. Aims. We aim to explore the possible connection between hot exozodiacal dust and warm dust reservoirs (> 100 K) in asteroid belts. M ethods. We use precision near-infrared interferometry with VLTI/PIONIER to search for resolved emission at H band around a selected sample of nearby stars. Results. Our observations reveal the presence of resolved near-infrared emission around 17 out of 52 stars, four of which are shown to be due to a previously unknown stellar companion. The 13 other H-band excesses are thought to originate from the thermal emission of hot dust grains. Taking into account earlier PIONIER observations, and after reevaluating the warm dust content of all our PIONIER targets through spectral energy distribution modeling, we find a detection rate of 17.1(+8.1)(-4.6)% for H-band excess around main sequence stars hosting warm dust belts, which is statistically compatible with the occurrence rate of 14.6(+4.3)(-2.8)% found around stars showing no signs of warm dust. After correcting for the sensitivity loss due to partly unresolved hot disks, under the assumption that they are arranged in a thin ring around their sublimation radius, we however find tentative evidence at the 3{sigma} level that H-band excesses around stars with outer dust reservoirs (warm or cold) could be statistically larger than H-band excesses around stars with no detectable outer dust. Conclusions. Our observations do not suggest a direct connection between warm and hot dust populations, at the sensitivity level of the considered instruments, although they bring to light a possible correlation between the level of H-band excesses and the presence of outer dust reservoirs in general.
We combine nulling interferometry at 10 {mu}m using the MMT and Keck Telescopes with spectroscopy, imaging, and photometry from 3 to 100 {mu}m using Spitzer to study the debris disk around {beta} Leo over a broad range of spatial scales, correspondin g to radii of 0.1 to ~100 AU. We have also measured the close binary star o Leo with both Keck and MMT interferometers to verify our procedures with these instruments. The {beta} Leo debris system has a complex structure: 1.) relatively little material within 1 AU; 2.) an inner component with a color temperature of ~600 K, fitted by a dusty ring from about 2 to 3 AU; and 3.) a second component with a color temperature of ~120 K fitted by a broad dusty emission zone extending from about ~5 AU to ~55 AU. Unlike many other A-type stars with debris disks, {beta} Leo lacks a dominant outer belt near 100 AU.
We compare line emission calculated from theoretical disk models with optical to sub-millimeter wavelength observational data of the gas disk surrounding TW Hya and infer the spatial distribution of mass in the gas disk. The model disk that best matc hes observations has a gas mass ranging from $sim10^{-4}-10^{-5}$ms for $0.06{rm AU} <r<3.5$AU and $sim 0.06$ms for $ 3.5 {rm AU} <r<200$AU. We find that the inner dust hole ($r<3.5$AU) in the disk must be depleted of gas by $sim 1-2$ orders of magnitude compared to the extrapolated surface density distribution of the outer disk. Grain growth alone is therefore not a viable explanation for the dust hole. CO vibrational emission arises within $rsim 0.5$AU from thermal excitation of gas. [OI] 6300AA and 5577AA forbidden lines and OH mid-infrared emission are mainly due to prompt emission following UV photodissociation of OH and water at $rlesssim0.1$AU and at $rsim 4$AU. [NeII] emission is consistent with an origin in X-ray heated neutral gas at $rlesssim 10$AU, and may not require the presence of a significant EUV ($h u>13.6$eV) flux from TW Hya. H$_2$ pure rotational line emission comes primarily from $rsim 1-30$AU. [OI]63$mu$m, HCO$^+$ and CO pure rotational lines all arise from the outer disk at $rsim30-120$AU. We discuss planet formation and photoevaporation as causes for the decrease in surface density of gas and dust inside 4 AU. If a planet is present, our results suggest a planet mass $sim 4-7$M$_J$ situated at $sim 3$AU. Using our photoevaporation models and the best surface density profile match to observations, we estimate a current photoevaporative mass loss rate of $4times10^{-9}$ms yr$^{-1}$ and a remaining disk lifetime of $sim 5$ million years.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا