ﻻ يوجد ملخص باللغة العربية
Introducing an isolated intermediate band (IB) into a wide band gap semiconductor can potentially improve the optical absorption of the material beyond the Shockley-Queisser limitation for solar cells. Here, we present a systematic study of the thermodynamic stability, electronic structures, and optical properties of transition metals (M = Ti, V, and Fe) doped CuAlSe2 for potential IB thin film solar cells, by adopting the first-principles calculation based on the hybrid functional method. We found from chemical potential analysis that for all dopants considered, the stable doped phase only exits when the Al atom is substituted. More importantly, with this substitution, the IB feature is determined by $3d$ electronic nature of M^{3+} ion, and the electronic configuration of 3d^1 can drive a optimum IB that possesses half-filled character and suitable subbandgap from valence band or conduction band. We further show that Ti-doped CuAlSe2 is the more promising candidate for IB materials since the resulted IB in it is half filled and extra absorption peaks occurs in the optical spectrum accompanied with a largely enhanced light absorption intensity. The result offers a understanding for IB induced by transition metals into CuAlSe2 and is significant to fabricate the related IB materials.
}We present a formalism for extending the second moment tight-binding model, incorporating ferro- and anti-ferromagn etic interaction terms which are needed for the FeCr system. For antiferromagnetic and paramagnetic materials, an explicit additional
The high-throughput (HT) computational method is a useful tool to screen high performance functional materials. In this work, using the deformation potential method under the single band model, we evaluate the carrier relaxation time and establish an
Most III-nitride semiconductors are grown on non-lattice-matched substrates like sapphire or silicon due to the extreme difficulty of obtaining a native GaN substrate. We show that several layered transition-metal dichalcogenides are closely lattice
The prediction of ultra-low magnetic damping in Co 2 MnZ Heusler half-metal thin-film magnets is explored in this study and the damping response is shown to be linked to the underlying electronic properties. By substituting the Z elements in high cry
We model a Kohn-Sham potential with a discontinuity at integer particle numbers derived from the GLLB approximation of Gritsenko et al. We evaluate the Kohn-Sham gap and the discontinuity to obtain the quasiparticle gap. This allows us to compare the